A study of nuclear effects in neutrino interactions using transverse kinematic imbalance

<u>Xianguo Lu</u>,³ L. Pickering,² S. Dolan,³ G. Barr,³ D. Coplowe,³ Y. Uchida,² D. Wark,^{3,4} M. Wascko,² A. Weber,^{3,4} and T. Yuan¹

¹University of Colorado at Boulder, Department of Physics, Boulder, Colorado, USA ²Imperial College London, Department of Physics, London, United Kingdom ³Department of Physics, Oxford University, Oxford, Oxfordshire, United Kingdom ⁴STFC, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, United Kingdom

> NuWro Group Meeting 2-Nov-2015

3659

Effects associated with nuclear targets in neutrino interactions – highly convoluted and complex

nuclear effects

Outline

5. Reconstruction of energy spectra of neutrino beams independent of nuclear effects

Minimal energy dependence with final-state hadronic kinematics

$$\nu + N \rightarrow l' + N'$$

Nuclear medium response

Factorization assumption:

FSI (not considering absorption or charge exchange)

FSI all determined by N' momentum. **Two-step approach:**

1. In-medium interaction probability $\tau_{_{\rm f}}$

(1- τ_{f} is the fraction not having FSI at all). 2. Energy-momentum transfer $(\Delta E, \Delta \vec{p})$ from N' to the nucleus, only non-zero when there is FSI.

Medium response:

Nuclear emission: nucleus being excited or broken-up, emitting particles. Probability: $P(\Delta E)$ In practice, slow emission = no emission.

N'

`(-1)

Nuclear medium response

 $P(\Delta E)$ hasn't beem experimentally constrained *yet*.

Significance:

1. precise neutrino energy measurement (with calorimetry)

2. in hydro-nucleus target, high $P(\Delta E)$ nuclei more easy to be tagged and better for

neutrino-hydrogen interaction selection (more discussions in later slides)

3. important to describe measured vertex energy

However, ΔE and ΔP not experimentally accessible in v-A scattering. "Next of kin" is found \rightarrow next slide

Single-transverse kinematic imbalance

$$\begin{split} \delta\phi_{\mathrm{T}} &\equiv \arccos \frac{-\vec{p}_{\mathrm{T}}^{\ l'} \cdot \vec{p}_{\mathrm{T}}^{\ N'}}{\left|\vec{p}_{\mathrm{T}}^{\ l'} \cdot \vec{p}_{\mathrm{T}}^{\ N'}\right|},\\ \delta\vec{p}_{\mathrm{T}} &\equiv \vec{p}_{\mathrm{T}}^{\ l'} + \vec{p}_{\mathrm{T}}^{\ N'},\\ \delta\alpha_{\mathrm{T}} &\equiv \arccos \frac{-\vec{p}_{\mathrm{T}}^{\ l'} \cdot \delta\vec{p}_{\mathrm{T}}}{\left|\vec{p}_{\mathrm{T}}^{\ l'} \cdot \delta\vec{p}_{\mathrm{T}}\right|}, \end{split}$$

Single-transverse kinematic imbalance

Previous measurement: NOMAD (2009): $\delta \phi_{\tau}$, δp_{τ} QE event selection MINERvA (2015): $\delta \phi_{\tau}$ QE-like evnts T2K-INGRID: $\delta \phi_{\tau}$ QE event selection

No published measurement for "boosting angle" $\delta \alpha_{T}$ None of them is studied in RES. In RES, nuclear effects in anti-nu can be studied! (T2K anti-nu (RHC) flux file to be included in NuWro release?)

Direct constraint on in-medium interaction probability

$$P\left(\delta p_{\mathrm{T}}\right) \sim \begin{cases} \tau_{\mathrm{f}} \left\langle P\left(\Delta p\right)\right\rangle, \text{ for } \delta p_{\mathrm{T}} \lesssim p_{\mathrm{F}} \\ \left\langle P\left(\Delta p\right)\right\rangle, \text{ for } \delta p_{\mathrm{T}} \gtrsim p_{\mathrm{F}} \end{cases}$$

Fermi motion uncorrelated to in-medium momentum transfer (2% effect)

Challenging measurement Requiring impurity < true nuclear emission probability

Extensions

- Multinucleon correlations
 - Initial state in-medium energy-momentum transfer
 - Emission of correlated nucleons: initial state nuclear emission
 - \rightarrow non-distinguishable from final-state transfer and emission
 - \rightarrow same probabilistic approach can be applied!

 \rightarrow FSI, multinucleon correlations could be separated by comparing QE, RES, 2π production

 Applications in e-A scattering: more kinematic imbalance can be used to study common nuclear effects. How about testing with eWro? And reanalyzing historical e-A data? Factorization means that e-A FSI = v-A FSI.

Double-Transverse Symmetry

• $\Delta(1232)$ for v and anti-v,

highly symmetrical systems:

{X, Y} = {p, π^+ } for $\nu + p \rightarrow l^- + \Delta^{++}$ or {p, π^- } for $\bar{\nu} + p \rightarrow l^+ + \Delta^0$

• Double-transverse momentum imbalance

 $\delta p_{\rm TT} \equiv p_{\rm TT}^{\rm p} + p_{\rm TT}^{\pi}$

- 0 for hydrogen
- Symmetric broadening irreducible
 - by Fermi motion O(200 MeV)
 - further by FSI
- After reconstruction
 - Still symmetric
 - Hydrogen shape is only detector response → "Improving the detector resolution ... eventually an event-by-event selection of hydrogen interactions"[1]
 - v energy resolution only detector response → simultaneously improved with selection.

[1] Phys.Rev. D92 (2015) 5, 051302 2-Nov-2015

Summary

- Extensive examination of kinematic imbalance in v-A scattering has been done: single-transverse and double-transverse
- Rich physics program, *terra incognita*
- Experimental status: T2K measurement on-going, MINERvA measurement (Oxford group) about to start
- NuWro is excellent! Has been great fun to play with it!

BACKUP

2-Nov-2015

