

Modeling two-nucleon knock-out in neutrino-nucleus scattering

Kajetan Niewczas

Kajetan Niewczas

2p2h Ghent

Kajetan Niewczas

2p2h Ghent

06.11.2020 2 / 44

Detected rate of ν_{α} events

2p2h Ghent

Nuclear response

Dimensionality of the problem

any binary scattering with on-shell particles

4 four-vectors = 16 variables

- 4 : on-shell relations
- -4:4-mom. conservation
- 3 : nucleon rest frame
- 2 : neutrino along \hat{z}

3 independent variables

 \rightarrow we can fix incoming energy (E_{ν})

 \rightarrow the cross section is rotationally invariant (ϕ_{μ})

ightarrow the final formula is 1-dimensional, e.g. ${
m d}\sigma/{
m d}q^2$

Dimensionality of the problem

scatterings including an off-shell target

3 independent variables

- + 3 : nucleus rest frame
- + 1 : off-shell nucleon

7 independent variables

+ 3 : every on-shell particle

 \rightarrow we can fix incoming energy (E_{ν})

 \rightarrow the cross section is rotationally invariant (ϕ_{μ})

 \rightarrow the final formula is at least 5-dimensional

Computing νA cross section

- \rightarrow generate **events**
- \rightarrow cover whole phase space
- \rightarrow useful but approximated

e.g. NuWro

Detailed calculation

- \rightarrow compute cross sections
- ightarrow fixed kinematics
- ightarrow precise but **expensive**

e.g. Ghent group

Contents

- History of 2p2h modeling
- Theoretical formalism of the Ghent group
 - Kinematics
 - Nucleon wave functions
 - Short-range correlations
 - Meson-exchange currents
- Experimental prospects

T. Van Cuyck, N. Jachowicz, R. González-Jiménez et al., Phys.Rev.C 95 (2017) 054611

T. Van Cuyck, N. Jachowicz, R. González-Jiménez et al., Phys.Rev.C 94 (2016) 024611

Kajetan Niewczas

2p2h Ghent

06.11.2020

The MiniBooNE puzzle

An attempt to make a pure CCQE measurement...

S. Dolan

The MiniBooNE puzzle

An attempt to make a pure CCQE measurement...

 \rightarrow suffered from huge model dependencies

L. Alvarez-Ruso, Nucl.Phys.B Proc.Suppl. 229-232 (2012) 167-173 (Neutrino 2010)

Kajetan Niewczas

The theoretical framework: language of response functions

Currents:

$$egin{array}{lll} \mathcal{J}^{\mathrm{lep}}_{\mu}(m{q}) &\equiv ar{u}(m{k}_{f},m{s}_{f})\hat{J}^{\mathrm{lep}}_{\mu}u(m{k}_{i},m{s}_{i}) = ar{u}(m{k}_{f},m{s}_{f})\gamma_{\mu}(1+h\gamma^{5})u(m{k}_{i},m{s}_{i}) \ \mathcal{J}^{\mathrm{nuc}}_{\mu}(m{q}) &\equiv \langle \Psi_{f}|\,\hat{J}^{\mathrm{nuc}}_{\mu}|\Psi_{i}
angle \end{array}$$

where h = 0 for (unpolarized) electrons, and h = -(+) for (anti)neutrinos

Matrix elements:

$$egin{aligned} \mathcal{M}^{W}_{fi} &= -irac{G_{F}}{\sqrt{2}}\cos heta_{c}\mathcal{J}^{\mathrm{lep}}_{
u}(q)\mathcal{J}^{
u}_{\mathrm{nuc}}(q) \ \mathcal{M}^{\gamma}_{fi} &= -irac{e^{2}}{Q^{2}}\mathcal{J}^{\mathrm{lep}}_{
u}(q)\mathcal{J}^{
u}_{\mathrm{nuc}}(q) \end{aligned}$$

The cross section is propotional to the square:

$$\overline{\sum}_{if} \left| \mathcal{M}_{fi}^{W} \right|^{2} = \frac{G_{F}^{2}}{2} \cos^{2} \theta_{c} L_{\mu\nu} H^{\mu\nu}$$

$$\overline{\sum}_{if} \left| \mathcal{M}_{fi}^{\gamma} \right|^{2} = \frac{e^{4}}{4Q^{2}} L_{\mu\nu} H^{\mu\nu}$$

Leptonic tensor:

$$\mathcal{L}_{\mu
u} \propto \left(\mathcal{k}_{i,\mu} \mathcal{k}_{f,
u} + \mathcal{k}_{f,
u} \mathcal{k}_{i,\mu} + \mathcal{g}_{\mu
u} m_i m_f - \mathcal{g}_{\mu
u} \mathcal{k}_i \cdot \mathcal{k}_f - i \hbar \epsilon_{\mu
ulphaeta} \mathcal{k}_i^lpha \mathcal{k}_f^eta
ight)$$

the axial term $(-i\hbar\epsilon_{\mu\nu\alpha\beta}k_i^{\alpha}k_f^{\beta})$ drops down for electrons (h = 0)

In such frame of reference:

$$L_{\mu\nu}W^{\mu\nu} = \frac{2\epsilon_i\epsilon_f}{m_im_f} [v_{CC}W_{CC} + v_{CL}W_{CL} + v_{LL}W_{LL} + v_TW_T + v_{TT}W_{TT} + v_{TC}W_{TC} + v_{TL}W_{TL} + h(v_{T'}W_{T'} + v_{TC'}W_{TC'} + v_{TL'}W_{TL'})]$$

Lepton responses

$$v_{CC} = 1 + \zeta \cos \theta$$

$$v_{CL} = -\left(\frac{\omega}{q}\left(1 + \zeta \cos \theta\right) + \frac{m_f^2}{\epsilon_f q}\right)$$

$$v_{LL} = 1 + \zeta \cos \theta - \frac{2\epsilon_i \epsilon_f}{q^2} \zeta^2 \sin^2 \theta$$

$$v_T = 1 - \zeta \cos \theta + \frac{\epsilon_i \epsilon_f}{q^2} \zeta^2 \sin^2 \theta$$

$$v_{TT} = -\frac{\epsilon_i \epsilon_f}{q^2} \zeta^2 \sin^2 \theta$$

$$v_{TC} = -\frac{\sin\theta}{\sqrt{2}q}\zeta(\epsilon_i + \epsilon_f)$$

$$v_{TL} = \frac{\sin\theta}{\sqrt{2}q^2}\zeta(\epsilon_i^2 - \epsilon_f^2 + m_f^2)$$

$$v_{T'} = \frac{\epsilon_i + \epsilon_f}{q}(1 - \zeta\cos\theta) - \frac{m_f^2}{\epsilon_f q}$$

$$v_{TC'} = -\frac{\sin\theta}{\sqrt{2}}\zeta$$

$$v_{TL'} = \frac{\omega}{q}\frac{\sin\theta}{\sqrt{2}}\zeta$$

ightarrow dimensionless kinematical factors

One-nucleon knockout

$$\frac{\mathrm{d}\sigma}{\mathrm{d}E_{l'}\mathrm{d}\Omega_{l'}} = 4\pi\sigma^X \zeta f_{rec}^{-1} \big[v_{CC} W_{CC} + v_{CL} W_{CL} + v_{LL} W_{LL} + v_T W_T + h v_{T'} W_{T'} \big],$$

with v_i and σ^{χ} containing leptonic information, e.g.

$$\sigma^{\text{Mott}} = \left(\frac{\alpha \cos\left(\theta_{e'}/2\right)}{2E_e \sin^2\left(\theta_{e'}/2\right)}\right)^2, \qquad \sigma^{W} = \left(\frac{G_F \cos\theta_c E_{\mu}}{2\pi}\right)^2,$$

and the response functions W_i containing the nuclear information

$$\begin{split} W_{CC} &= \left|\mathcal{J}_{0}\right|^{2} \\ W_{CL} &= 2\Re\left(\mathcal{J}_{0}\mathcal{J}_{3}^{\dagger}\right) \\ W_{LL} &= \left|\mathcal{J}_{3}\right|^{2} \\ W_{T} &= \left|\mathcal{J}_{+}\right|^{2} + \left|\mathcal{J}_{-}\right|^{2} \\ W_{T'} &= \left|\mathcal{J}_{+}\right|^{2} - \left|\mathcal{J}_{-}\right|^{2} \end{split}$$

$$egin{aligned} \mathcal{J}_0 &= ig\langle \Psi_\mathrm{f} | \, \hat{J}_0(q) \, | \Psi_\mathrm{i} ig
angle \ \mathcal{J}_+ &= ig\langle \Psi_\mathrm{f} | \, \hat{J}_+(q) \, | \Psi_\mathrm{i} ig
angle \ \mathcal{J}_- &= ig\langle \Psi_\mathrm{f} | \, \hat{J}_-(q) \, | \Psi_\mathrm{i} ig
angle \ \mathcal{J}_3 &= ig\langle \Psi_\mathrm{f} | \, \hat{J}_3(q) \, | \Psi_\mathrm{i} ig
angle \end{aligned}$$

Two-nucleon knockout

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}E_{l'}\mathrm{d}\Omega_{l'}\mathrm{d}T_{a}\mathrm{d}\Omega_{a}\mathrm{d}\Omega_{b}} &= \sigma^{X}\zeta \,g_{rec}^{-1} \\ \times \left[v_{CC} W_{CC} + v_{CL} W_{CL} + v_{LL} W_{LL} + v_{T} W_{T} + v_{TT} W_{TT} + v_{TC} W_{TC} \\ &+ v_{TL} W_{TL} + h(v_{T'} W_{T'} + v_{TC'} W_{TC'} + v_{TL'} W_{TL'}) \right], \end{aligned}$$

$$\begin{split} & \mathcal{W}_{TT} = 2\Re \left(\mathcal{J}_{+} \mathcal{J}_{-}^{\dagger} \right) \\ & \mathcal{W}_{TC} = 2\Re \left(\mathcal{J}_{0} \left(\mathcal{J}_{+} - \mathcal{J}_{-} \right)^{\dagger} \right) \\ & \mathcal{W}_{TL} = 2\Re \left(\mathcal{J}_{3} \left(\mathcal{J}_{+} - \mathcal{J}_{-} \right)^{\dagger} \right) \\ & \mathcal{W}_{TC'} = 2\Re \left(\mathcal{J}_{0} \left(\mathcal{J}_{+} + \mathcal{J}_{-} \right)^{\dagger} \right) \\ & \mathcal{W}_{TL'} = 2\Re \left(\mathcal{J}_{3} \left(\mathcal{J}_{+} + \mathcal{J}_{-} \right)^{\dagger} \right) \\ \end{split}$$

 \rightarrow integrate over outgoing nucleons $\int dT_a d\Omega_a d\Omega_b$

19/44

The theoretical framework: nuclear modeling

Nuclear model: initial state

- Ground state nucleus is an independent-particle model (IPM)
 - Mean-field potential results in a shell model
 - Calculated with a Hartree-Fock (HF) approximation using a Skyrme NN force (SkE2)
 - Accounts for binding energies and nuclear structure

2p2h Ghent

Nuclear model: initial state

 \rightarrow we iteravitely solve a radial Schrödinger equation for R_{ljm}

 \rightarrow carbon wave functions for particular shells

Kajetan N	liewczas
-----------	----------

Nuclear model: final state

- Continuum wave functions are calculated using the same NN potential
 - Orthogonality is preserved between initial and final states
 - **Distortion effects** of the residual nucleus on the ejected nucleons are incorporated
 - · Pauli-blocking effects included inherently

Multipole expansion

 \rightarrow we perform **non-relativistic reduction of operators** \rightarrow simplify integrals with **multipole expansion**

$$\begin{split} \hat{\rho}(\mathbf{q}) &\to \hat{M}_{JM}^{\text{Coul}}(q) = \int \mathrm{d}\mathbf{r} \left[j_J(qr) Y_{JM}(\Omega_r) \right] \hat{\rho}(\mathbf{r}) \\ \hat{J}_3(\mathbf{q}) &\to \hat{L}_{JM}^{\text{long}}(q) = \frac{i}{q} \int \mathrm{d}\mathbf{r} \left[\nabla (j_J(qr) Y_{JM}(\Omega_r)) \right] \cdot \hat{J}(\mathbf{r}) \\ \hat{J}_{\pm}(\mathbf{q}) &\to \hat{T}_{JM}^{\text{elec}}(q) = \frac{1}{q} \int \mathrm{d}\mathbf{r} \left[\nabla \times (j_J(qr) \mathbf{Y}_{J(J,q)}^M(\Omega_r)) \right] \cdot \hat{J}(\mathbf{r}) \\ &\to \hat{T}_{JM}^{\text{magn}}(q) = \int \mathrm{d}\mathbf{r} \left[j_J(qr) \mathbf{Y}_{J(J,q)}^M(\Omega_r) \right] \cdot \hat{J}(\mathbf{r}) \end{split}$$

ightarrow summation over J increases the accuracy of our results

Nuclear currents in the IA

$$\begin{aligned} \hat{\rho}_{V}(\mathbf{r}) &= \sum_{i}^{A} F_{1}(Q^{2})\delta^{(3)}(\mathbf{r} - \mathbf{r}_{i})\tau_{\pm}(i) \\ \hat{\rho}_{A}(\mathbf{r}) &= \sum_{i}^{A} \frac{G_{A}(Q^{2})}{2m_{N}i}\sigma_{i} \cdot \left[\delta^{(3)}(\mathbf{r} - \mathbf{r}_{i})\overrightarrow{\nabla}_{i} - \overleftarrow{\nabla}_{i}\delta^{(3)}(\mathbf{r} - \mathbf{r}_{i})\right]\tau_{\pm}(i) \\ \hat{J}_{V}(\mathbf{r}) &= \hat{J}_{con}(\mathbf{r}) + \hat{J}_{mag}(\mathbf{r}) \\ &= \sum_{i}^{A} \frac{F_{1}(Q^{2})}{2m_{N}i} \left[\delta^{(3)}(\mathbf{r} - \mathbf{r}_{i})\overrightarrow{\nabla}_{i} - \overleftarrow{\nabla}_{i}\delta^{(3)}(\mathbf{r} - \mathbf{r}_{i})\right]\tau_{\pm}(i) \\ &+ \sum_{i}^{A} \frac{F_{1}(Q^{2}) + F_{2}(Q^{2})}{2m_{N}} \left(\overrightarrow{\nabla} \times \sigma_{i}\right)\delta^{(3)}(\mathbf{r} - \mathbf{r}_{i})\tau_{\pm}(i) \\ \hat{J}_{A}(\mathbf{r}) &= \sum_{i}^{A} G_{A}(Q^{2})\delta^{(3)}\sigma_{i}(\mathbf{r} - \mathbf{r}_{i})\tau_{\pm}(i) \end{aligned}$$

One-nucleon knockout

 \rightarrow multipoles contribution

ightarrow comparison to electron scattering data

Kajetan Niewczas

2p2h Ghent

26/44

Fat tails in the single-nucleon momentum distribution cannot be explained within an independent-particle model (IPM)

- → Nucleons occur in pairs with high relative momenta and low center-of-mass momenta (SRC pairs)
- \rightarrow Mean-field: momenta below k_F , SRC pairs: momenta above k_F
- → A signature of SRC is back-to-back 2N knockout
- \rightarrow SRC also have an effect on 1*N* knockout

- The correlations have a short range: $f(r_{ij}) \rightarrow 0$ at $r_{ij} > 3$ fm
- \circ Tensor correlation function dominates for intermediate relative momenta 200 400 MeV/c
- Central correlation function dominates at high relative momenta
- Spin-isospin correlation function overall relatively small
- $\circ~$ These correlation functions are input

(Gearhart, 1994), (Pieper, Wiringa, and Pandharipande, 1992)

2p2h Ghent

Single-nucleon momentum distribution

J.Phys.G 42 (2015) 5, 055104

2p2h Ghent

Correlated wave functions $|\Psi\rangle$ are constructed by acting with a many-body correlation operator $\widehat{\mathcal{G}}$ on the uncorrelated Hartree-Fock wave functions $|\Phi\rangle$

$$|\Psi\rangle = \frac{1}{\sqrt{\mathcal{N}}}\widehat{\mathcal{G}}|\Phi\rangle, \quad \text{with} \quad \mathcal{N} = \langle\Phi|\widehat{\mathcal{G}}^{\dagger}\widehat{\mathcal{G}}|\Phi\rangle$$

The central (*c*), tensor ($t\tau$) and spin-isospin ($\sigma\tau$) correlations are responsible for majority of the strength

$$\widehat{\mathcal{G}} \approx \widehat{\mathcal{S}} \left(\prod_{i < j}^{A} \left[1 + \widehat{l}(i, j) \right] \right)$$

with $\widehat{\mathcal{S}}$ the symmetrization operator and

$$\widehat{l}(i,j) = -g_c(\mathbf{r}_{ij}) + f_{t\tau}(\mathbf{r}_{ij})\widehat{S}_{ij}(\vec{\tau}_i \cdot \vec{\tau}_j) + f_{\sigma\tau}(\mathbf{r}_{ij})(\vec{\sigma}_i \cdot \vec{\sigma}_j)(\vec{\tau}_i \cdot \vec{\tau}_j).$$

 $g_c(r_{ij})$, $f_{t\tau}(r_{ij})$ and $f_{\sigma\tau}(r_{ij})$ are the respective correlation functions

Correlation functions: (Gearhart, 1994), (Pieper, Wiringa, and Pandharipande, 1992)

30/44

Transition matrix elements between correlated states $|\Psi\rangle$ can be written as ones between uncorrelated states $|\Phi\rangle$, with an effective transition operator

$$\langle \Psi_f | \widehat{J}^{\mathrm{nucl}}_{\mu} | \Psi_i
angle = rac{1}{\sqrt{\mathcal{N}_i \mathcal{N}_f}} \langle \Phi_f | \widehat{J}^{\mathrm{eff}}_{\mu} | \Phi_i
angle,$$

with

$$\widehat{J}^{\mathrm{eff}}_{\mu} = \widehat{\mathcal{G}}^{\dagger} \widehat{J}^{\mathrm{nucl}}_{\mu} \widehat{\mathcal{G}} = \left(\prod_{j < k}^{\mathcal{A}} \left[1 + \widehat{l}(j,k) \right] \right)^{\dagger} \widehat{J}^{\mathrm{nucl}}_{\mu} \left(\prod_{l < m}^{\mathcal{A}} \left[1 + \widehat{l}(l,m) \right] \right).$$

In the IA, the many-body nuclear current can be written as a sum of one-body operators

$$\widehat{J}_{\lambda}^{\text{eff}} = \left(\prod_{j < k}^{A} \left[1 + \widehat{I}(j, k)\right]\right)^{\dagger} \sum_{i=1}^{A} \widehat{J}_{\lambda}^{[1]}(i) \left(\prod_{l < m}^{A} \left[1 + \widehat{I}(l, m)\right]\right).$$

Use the fact that SRC is a short-range phenomenon

- ightarrow Terms linear in the correlation operator are retained
- ightarrow A-body operator ightarrow 2-body operator

$$\widehat{J}_{\lambda}^{\text{eff}} \approx \underbrace{\sum_{i=1}^{A} \widehat{J}_{\lambda}^{[1]}(i)}_{\text{one-body(IA)}} + \underbrace{\sum_{i < j}^{A} \widehat{J}_{\lambda}^{[1],\text{in}}(i,j), + \left[\sum_{i < j}^{A} \widehat{J}_{\lambda}^{[1],\text{in}}(i,j)\right]^{\mathsf{T}}}_{\text{two-body(SRC)}}$$

where

$$\widehat{J}_{\lambda}^{[1],\mathrm{in}}(i,j) = \left[\widehat{J}_{\lambda}^{[1]}(i) + \widehat{J}_{\lambda}^{[1]}(j)\right]\widehat{I}(i,j)$$

 $\rightarrow\,$ Effective nuclear current is the sum of a one-body (IA) and two-body (SRC) current

Kajetan	Niewczas
---------	----------

The 1p1h (top) and 2p2h (bottom) diagrams considered. The top left diagram shows the 1p1h channel in the IA.

Kajetan Niewczas	2p2h Ghent	06.11.2020	33 / 44

SRC results - Inclusive ${}^{12}C(\nu_{\mu},\mu^{-})$

→ Small decrease of 1*p*1*h* channel due to SRCs

 \rightarrow Inclusive 2*p*2*h* appears as a broad background to 1*p*1*h*

```
Kajetan Niewczas
```

Meson-exchange currents

The seagull and pion-in-flight currents.

Meson-exchange currents

The Δ currents (top) and correlation currents (bottom).

MEC results - Inclusive ${}^{12}C(\nu_{\mu}, \mu^{-})$

 \rightarrow Small increase of 1*p*1*h* channel due to MECs

 \rightarrow Inclusive 2p2h appears as a broad background to 1p1h

SRS + MEC

Extend the current model with MECs

SRC + MEC results - Inclusive ${}^{12}C(\nu_{\mu}, \mu^{-})$

- \rightarrow Effect of MECs largest for small θ_{μ} , SRCs for larger θ_{μ} in 1*p*1*h* channel
- \rightarrow Inclusive 2p2h appears as a broad background to 1p1h

Comparison with MiniBooNE data

MiniBooNE 'CCQE-like' data from Phys.Rev.D 81 (2010) 092005

CRPA results are from Phys.Rev.C 94 (2016) 054609

Inclusive T2K data from Phys.Rev.D 87 (2013) 092003

CRPA results are from Phys.Rev.C 94 (2016) 054609

Exclusive $A(\nu_{\mu}, \mu^{-}N_{a}N_{b})$

The ¹²C($\nu_{\mu}, \mu^{-}N_{a}N_{b}$) cross section at $\epsilon_{\nu_{\mu}} = 750$ MeV, $\epsilon_{\mu} = 550$ MeV, $\theta_{\mu} = 15^{\circ}$ and $T_{p} = 50$ MeV for in-plane kinematics (q = 268 MeV/c, $x_{B} = 0.08$). The bottom panel shows $P_{12} < 300$ MeV/c.

42 / 44

- $\rightarrow\,$ The Ghent group provides a powerful model capable of calculating various contributions to the 2p2h final states
- $\rightarrow\,$ The **MEC calculation misses** $\Delta\text{-currents}$ and needs to be further developed
- \rightarrow Efforts are done to **implement** such model in **Monte Carlo event** generators so it can be used in experimental analyses

Collaborators

Wrocław group

- Jan Sobczyk
- Tomasz Bonus
- Krzysztof Graczyk
- Cezary Juszczak
- o Dmitry Zhuridov

Ghent group

- Natalie Jachowicz
- Raúl González Jiménez
- Alexis Nikolakopoulos
- Jannes Nys
- Vishvas Pandey
- Tom Van Cuyck
- Nils Van Dessel

and many more ...