

Modeling two-nucleon knock-out in neutrino-nucleus scattering

Kajetan Niewczas

Uniwersytet
Wrocławski

UNIVERSITEIT GENT

Neutrino oscillation experiments

$$
P_{2 \mathrm{f}}\left(\nu_{\mu} \rightarrow \nu_{\mu}\right)=1-\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\Delta m^{2} L}{4 E_{\nu}}\right)
$$

$$
E_{\nu}^{\mathrm{rec}}=\frac{2\left(M_{n}-E_{B}\right) E_{\mu}-\left(E_{B}^{2}-2 M_{n} E_{B}+m_{\mu}^{2}\right)}{2\left[M_{n}-E_{B}-E_{\mu}+\left|\vec{k}_{\mu}\right| \cos \theta_{\mu}\right]}
$$

Super-Kamiokande

Detected rate of ν_{α} events

$$
R_{\nu_{\alpha}} \sim \Phi_{\nu_{\mu}}\left(E_{\nu}\right) \times P_{\nu_{\mu} \rightarrow \nu_{\alpha}}\left(\{\Theta\}, E_{\nu}\right) \times \sigma_{\nu_{\alpha}}\left(E_{\nu}\right) \times \epsilon_{\operatorname{det}} .
$$

$$
\begin{array}{lllll}
\text { Event rate } & \text { Incoming flux } & \text { Oscillation probability } & \text { Cross section } & \text { Efficiency } \\
\hline
\end{array}
$$

Knowledge of neutrino-nucleus cross sections:
\rightarrow allows to reconstruct neutrino energy from the detected final states,
\rightarrow is the crucial uncertainty in oscillation analyses,
but...
\rightarrow is an advanced computational problem,
\rightarrow current precision is not exceeding 20%,
\rightarrow constraints from ND are not enough.
K. Abe et al., Phys.Rev.Lett. 121 (2018) 171802 (edited)

Nuclear response

Coherent

T. Van Cuyck

Dimensionality of the problem

$$
4 \text { four-vectors = } 16 \text { variables }
$$

- 4 : on-shell relations
- 4 : 4-mom. conservation
- 3 : nucleon rest frame
- 2 : neutrino along \hat{z}
any binary scattering with on-shell particles
3 independent variables
\rightarrow we can fix incoming energy $\left(E_{\nu}\right)$
\rightarrow the cross section is rotationally invariant $\left(\phi_{\mu}\right)$
\rightarrow the final formula is 1 -dimensional, e.g. $\mathrm{d} \sigma / \mathrm{d} q^{2}$

Dimensionality of the problem

scatterings including an off-shell target

3 independent variables

+ 3 : nucleus rest frame
+ 1 : off-shell nucleon

7 independent variables

+ 3 : every on-shell particle
\rightarrow we can fix incoming energy $\left(E_{\nu}\right)$
\rightarrow the cross section is rotationally invariant $\left(\phi_{\mu}\right)$
\rightarrow the final formula is at least 5-dimensional

Computing νA cross section

Monte Carlo generator

\rightarrow generate events
\rightarrow cover whole phase space
\rightarrow useful but approximated
e.g. NuWro

Detailed calculation
\rightarrow compute cross sections
\rightarrow fixed kinematics
\rightarrow precise but expensive
e.g. Ghent group

Contents

- History of 2p2h modeling
- Theoretical formalism of the Ghent group
- Kinematics
- Nucleon wave functions
- Short-range correlations
- Meson-exchange currents
- Experimental prospects

T. Van Cuyck, N. Jachowicz, R. González-Jiménez et al., Phys.Rev.C 95 (2017) 054611
T. Van Cuyck, N. Jachowicz, R. González-Jiménez et al., Phys.Rev.C 94 (2016) 024611

The MiniBooNE puzzle

An attempt to make a pure CCQE measurement...

The MiniBooNE puzzle

An attempt to make a pure CCQE measurement...
\rightarrow suffered from huge model dependencies

L. Alvarez-Ruso, Nucl.Phys.B Proc.Suppl. 229-232 (2012) 167-173 (Neutrino 2010)

The theoretical framework: language of response functions

Cross section formula

CC νA scattering

EM eA scattering

Currents:

$$
\begin{aligned}
\mathcal{J}_{\mu}^{\text {lep }}(q) & \equiv \bar{u}\left(k_{f}, s_{f}\right) \hat{J}_{\mu}^{\text {lep }} u\left(k_{i}, s_{i}\right)=\bar{u}\left(k_{f}, s_{f}\right) \gamma_{\mu}\left(1+h \gamma^{5}\right) u\left(k_{i}, s_{i}\right) \\
\mathcal{J}_{\mu}^{\text {nuc }}(q) & \equiv\left\langle\Psi_{f}\right| \hat{J}_{\mu}^{\text {nuc }}\left|\Psi_{i}\right\rangle
\end{aligned}
$$

where $h=0$ for (unpolarized) electrons, and $h=-(+)$ for (anti)neutrinos

Cross section formula

CC νA scattering

EM eA scattering

Matrix elements:

$$
\begin{aligned}
\mathcal{M}_{f i}^{W} & =-i \frac{G_{F}}{\sqrt{2}} \cos \theta_{c} \mathcal{J}_{\nu}^{\mathrm{lep}}(q) \mathcal{J}_{\text {nuc }}^{\nu}(q) \\
\mathcal{M}_{f i}^{\gamma} & =-i \frac{e^{2}}{Q^{2}} \mathcal{J}_{\nu}^{\mathrm{lep}}(q) \mathcal{J}_{\text {nuc }}^{\nu}(q)
\end{aligned}
$$

Cross section formula

CC νA scattering

EM eA scattering

The cross section is propotional to the square:

$$
\begin{aligned}
{\overline{\sum_{i f}}}\left|\mathcal{M}_{f i}^{W}\right|^{2} & =\frac{G_{F}^{2}}{2} \cos ^{2} \theta_{c} L_{\mu \nu} H^{\mu \nu} \\
{\overline{\sum_{i f}}}\left|\mathcal{M}_{f i}^{\gamma}\right|^{2} & =\frac{e^{4}}{4 Q^{2}} L_{\mu \nu} H^{\mu \nu}
\end{aligned}
$$

Cross section formula

CC νA scattering
EM eA scattering

Leptonic tensor:
$L_{\mu \nu} \propto\left(k_{i, \mu} k_{f, \nu}+k_{f, \nu} k_{i, \mu}+g_{\mu \nu} m_{i} m_{f}-g_{\mu \nu} k_{i} \cdot k_{f}-i h \epsilon_{\mu \nu \alpha \beta} k_{i}^{\alpha} k_{f}^{\beta}\right)$
the axial term $\left(-i h \epsilon_{\mu \nu \alpha \beta} k_{i}^{\alpha} k_{f}^{\beta}\right)$ drops down for electrons $(h=0)$

Cross section formula

In such frame of reference:

$$
\begin{gathered}
L_{\mu \nu} W^{\mu \nu}=\frac{2 \epsilon_{i} \epsilon_{f}}{m_{i} m_{f}} \quad\left[v_{C C} W_{C C}+v_{C L} W_{C L}+v_{L L} W_{L L}+v_{T} W_{T}+v_{T T} W_{T T}+v_{T C} W_{T C}\right. \\
\left.+v_{T L} W_{T L}+h\left(v_{T^{\prime}} W_{T^{\prime}}+v_{T C^{\prime}} W_{T C^{\prime}}+v_{T L^{\prime}} W_{T L^{\prime}}\right)\right]
\end{gathered}
$$

Lepton responses

$$
\begin{aligned}
& v_{C C}=1+\zeta \cos \theta \\
& v_{C L}=-\left(\frac{\omega}{q}(1+\zeta \cos \theta)+\frac{m_{f}^{2}}{\epsilon_{f} q}\right) \\
& v_{L L}=1+\zeta \cos \theta-\frac{2 \epsilon_{i} \epsilon_{f}}{q^{2}} \zeta^{2} \sin ^{2} \theta \\
& v_{T}=1-\zeta \cos \theta+\frac{\epsilon_{i} \epsilon_{f}}{q^{2}} \zeta^{2} \sin ^{2} \theta \\
& v_{T T}=-\frac{\epsilon_{i} \epsilon_{f}}{q^{2}} \zeta^{2} \sin ^{2} \theta
\end{aligned}
$$

$$
\begin{aligned}
v_{T C} & =-\frac{\sin \theta}{\sqrt{2} q} \zeta\left(\epsilon_{i}+\epsilon_{f}\right) \\
v_{T L} & =\frac{\sin \theta}{\sqrt{2} q^{2}} \zeta\left(\epsilon_{i}^{2}-\epsilon_{f}^{2}+m_{f}^{2}\right) \\
v_{T^{\prime}} & =\frac{\epsilon_{i}+\epsilon_{f}}{q}(1-\zeta \cos \theta)-\frac{m_{f}^{2}}{\epsilon_{f} q} \\
v_{T C^{\prime}} & =-\frac{\sin \theta}{\sqrt{2}} \zeta \\
v_{T L^{\prime}} & =\frac{\omega}{q} \frac{\sin \theta}{\sqrt{2}} \zeta
\end{aligned}
$$

\rightarrow dimensionless kinematical factors

One-nucleon knockout

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} E_{l^{\prime}} \mathrm{d} \Omega_{l^{\prime}}}=4 \pi \sigma^{x} \zeta f_{r e c}^{-1}\left[v_{C C} W_{C C}+v_{C L} W_{C L}+v_{L L} W_{L L}+v_{T} W_{T}+h v_{T^{\prime}} W_{T^{\prime}}\right]
$$ with v_{i} and σ^{X} containing leptonic information, e.g.

$$
\sigma^{\mathrm{Mott}}=\left(\frac{\alpha \cos \left(\theta_{e^{\prime}} / 2\right)}{2 E_{e} \sin ^{2}\left(\theta_{e^{\prime}} / 2\right)}\right)^{2}, \quad \sigma^{W}=\left(\frac{G_{F} \cos \theta_{c} E_{\mu}}{2 \pi}\right)^{2}
$$

and the response functions W_{i} containing the nuclear information

$$
\begin{aligned}
W_{C C} & =\left|\mathcal{J}_{0}\right|^{2} \\
W_{C L} & =2 \Re\left(\mathcal{J}_{0} \mathcal{J}_{3}^{\dagger}\right) \\
W_{L L} & =\left|\mathcal{J}_{3}\right|^{2} \\
W_{T} & =\left|\mathcal{J}_{+}\right|^{2}+\left|\mathcal{J}_{-}\right|^{2} \\
W_{T^{\prime}} & =\left|\mathcal{J}_{+}\right|^{2}-\left|\mathcal{J}_{-}\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{J}_{0} & =\left\langle\Psi_{\mathrm{f}}\right| \hat{\jmath}_{0}(q)\left|\Psi_{\mathrm{i}}\right\rangle \\
\mathcal{J}_{+} & =\left\langle\Psi_{\mathrm{f}}\right| \hat{\jmath}_{+}(q)\left|\Psi_{\mathrm{i}}\right\rangle \\
\mathcal{J}_{-} & =\left\langle\Psi_{\mathrm{f}}\right| \hat{\jmath}_{-}(q)\left|\Psi_{\mathrm{i}}\right\rangle \\
\mathcal{J}_{3} & =\left\langle\Psi_{\mathrm{f}}\right| \hat{\jmath}_{3}(q)\left|\Psi_{\mathrm{i}}\right\rangle
\end{aligned}
$$

Two-nucleon knockout

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma}{\mathrm{~d} E_{\prime^{\prime}} \mathrm{d} \Omega_{\prime^{\prime}} \mathrm{d} T_{a} \mathrm{~d} \Omega_{a} \mathrm{~d} \Omega_{b}}=\sigma^{\chi} \zeta g_{r e c}^{-1} \\
& \times\left[v_{C C} W_{C C}+v_{C L} W_{C L}+v_{L L} W_{L L}+v_{T} W_{T}+v_{T T} W_{T T}+v_{T C} W_{T C}\right. \\
& \left.\quad+v_{T L} W_{T L}+h\left(v_{T^{\prime}} W_{T^{\prime}}+v_{T C^{\prime}} W_{T C^{\prime}}+v_{T L^{\prime}} W_{T L^{\prime}}\right)\right],
\end{aligned}
$$

$$
\begin{aligned}
& W_{T T}=2 \Re\left(\mathcal{J}_{+} \mathcal{J}_{-}^{\dagger}\right) \\
& W_{T C}=2 \Re\left(\mathcal{J}_{0}\left(\mathcal{J}_{+}-\mathcal{J}_{-}\right)^{\dagger}\right) \mathcal{J}_{0}=\left\langle\Psi_{\mathrm{f}}\right| \widehat{J}_{0}(q)\left|\Psi_{\mathrm{i}}\right\rangle \\
& W_{T L}=2 \Re\left(\mathcal{J}_{3}\left(\mathcal{J}_{+}-\mathcal{J}_{-}\right)^{\dagger}\right) \mathcal{J}_{+}=\left\langle\Psi_{\mathrm{f}}\right| \widehat{J}_{+}(q)\left|\Psi_{\mathrm{i}}\right\rangle \\
& W_{T C^{\prime}}=2 \Re\left(\mathcal{J}_{0}\left(\mathcal{J}_{+}+\mathcal{J}_{-}\right)^{\dagger}\right) \mathcal{J}_{-}=\left\langle\Psi_{\mathrm{f}}\right| \widehat{J}_{-}(q)\left|\Psi_{\mathrm{i}}\right\rangle \\
& W_{T L^{\prime}}=2 \Re\left(\mathcal{J}_{3}\left(\mathcal{J}_{+}+\mathcal{J}_{-}\right)^{\dagger}\right) \mathcal{J}_{3}=\left\langle\Psi_{\mathrm{f}}\right| \widehat{J}_{3}(q)\left|\Psi_{\mathrm{i}}\right\rangle \\
&
\end{aligned}
$$

\rightarrow integrate over outgoing nucleons $\int \mathrm{d} T_{a} \mathrm{~d} \Omega_{a} \mathrm{~d} \Omega_{b}$

The theoretical framework: nuclear modeling

Nuclear model: initial state

- Ground state nucleus is an independent-particle model (IPM)
- Mean-field potential results in a shell model
- Calculated with a Hartree-Fock (HF) approximation using a Skyrme NN force (SkE2)
- Accounts for binding energies and nuclear structure

Nuclear model: initial state

\rightarrow we iteravitely solve a radial Schrödinger equation for $R_{l j m}$

\rightarrow carbon wave functions for particular shells

Nuclear model: final state

- Continuum wave functions are calculated using the same NN potential
- Orthogonality is preserved between initial and final states
- Distortion effects of the residual nucleus on the ejected nucleons are incorporated
- Pauli-blocking effects included inherently

Multipole expansion

\rightarrow we perform non-relativistic reduction of operators
\rightarrow simplify integrals with multipole expansion

$$
\begin{aligned}
& \hat{\rho}(\mathbf{q}) \rightarrow \hat{M}_{J M}^{\mathrm{Coul}}(q)=\int \mathrm{d} \mathbf{r}\left[j_{J}(q r) Y_{J M}\left(\Omega_{r}\right)\right] \hat{\rho}(\mathbf{r}) \\
& \hat{J}_{3}(\mathbf{q}) \rightarrow \hat{L}_{J M}^{\text {long }}(q)=\frac{i}{q} \int \mathrm{~d} \mathbf{r}\left[\nabla\left(j_{J}(q r) Y_{J M}\left(\Omega_{r}\right)\right)\right] \cdot \hat{J}(\mathbf{r}) \\
& \hat{J}_{ \pm}(\mathbf{q}) \rightarrow \hat{T}_{J M}^{\text {elec }}(q)=\frac{1}{q} \int \mathrm{~d} \mathbf{r}\left[\nabla \times\left(j_{J}(q r) \mathbf{Y}_{J(J, q)}^{M}\left(\Omega_{r}\right)\right)\right] \cdot \hat{J}(\mathbf{r}) \\
& \rightarrow \hat{T}_{J M}^{\mathrm{magn}}(q)=\int \mathrm{d} \mathbf{r}\left[j_{J}(q r) \mathbf{Y}_{J(J, q)}^{M}\left(\Omega_{r}\right)\right] \cdot \hat{J}(\mathbf{r})
\end{aligned}
$$

\rightarrow summation over J increases the accuracy of our results

Nuclear currents in the IA

$$
\begin{aligned}
\hat{\rho}_{V}(\mathbf{r}) & =\sum_{i}^{A} F_{1}\left(Q^{2}\right) \delta^{(3)}\left(\mathbf{r}-\mathbf{r}_{i}\right) \tau_{ \pm}(i) \\
\hat{\rho}_{A}(\mathbf{r}) & =\sum_{i}^{A} \frac{G_{A}\left(Q^{2}\right)}{2 m_{N} i} \sigma_{i} \cdot\left[\delta^{(3)}\left(\mathbf{r}-\mathbf{r}_{i}\right) \vec{\nabla}_{i}-\overleftarrow{\nabla}_{i} \delta^{(3)}\left(\mathbf{r}-\mathbf{r}_{i}\right)\right] \tau_{ \pm}(i) \\
\hat{J}_{V}(\mathbf{r}) & =\hat{J}_{\mathrm{Con}}(\mathbf{r})+\hat{J}_{\operatorname{mag}}(\mathbf{r}) \\
& =\sum_{i}^{A} \frac{F_{1}\left(Q^{2}\right)}{2 m_{N} i^{i}}\left[\delta^{(3)}\left(\mathbf{r}-\mathbf{r}_{i}\right) \vec{\nabla}_{i}-\overleftarrow{\nabla}_{i} \delta^{(3)}\left(\mathbf{r}-\mathbf{r}_{i}\right)\right] \tau_{ \pm}(i) \\
& +\sum_{i}^{A} \frac{F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right)}{2 m_{N}}\left(\vec{\nabla} \times \sigma_{i}\right) \delta^{(3)}\left(\mathbf{r}-\mathbf{r}_{i}\right) \tau_{ \pm}(i) \\
\hat{J}_{A}(\mathbf{r}) & =\sum_{i}^{A} G_{A}\left(Q^{2}\right) \delta^{(3)} \sigma_{i}\left(\mathbf{r}-\mathbf{r}_{i}\right) \tau_{ \pm}(i)
\end{aligned}
$$

One-nucleon knockout

\rightarrow multipoles contribution

\rightarrow comparison to electron scattering data

Short-range correlations

Fat tails in the single-nucleon momentum distribution cannot be explained within an independent-particle model (IPM)
Log(Momentum distribution)
\rightarrow Nucleons occur in pairs with high relative momenta and low center-of-mass momenta (SRC pairs)
\rightarrow Mean-field: momenta below k_{F}, SRC pairs: momenta above k_{F}
\rightarrow A signature of SRC is back-to-back $2 N$ knockout
\rightarrow SRC also have an effect on $1 N$ knockout

Short-range correlations

- The correlations have a short range: $f\left(r_{i j}\right) \rightarrow 0$ at $r_{i j}>3 \mathrm{fm}$
- Tensor correlation function dominates for intermediate relative momenta $200-400$ $\mathrm{MeV} / \mathrm{c}$
- Central correlation function dominates at high relative momenta
- Spin-isospin correlation function overall relatively small
- These correlation functions are input
(Gearhart, 1994), (Pieper, Wiringa, and Pandharipande, 1992)

Short-range correlations

Single-nucleon momentum distribution
J.Phys.G 42 (2015) 5, 055104

Short-range correlations

Correlated wave functions $|\Psi\rangle$ are constructed by acting with a many-body correlation operator $\widehat{\mathcal{G}}$ on the uncorrelated Hartree-Fock wave functions $|\Phi\rangle$

$$
|\Psi\rangle=\frac{1}{\sqrt{\mathcal{N}}} \widehat{\mathcal{G}}|\Phi\rangle, \quad \text { with } \quad \mathcal{N}=\langle\Phi| \widehat{\mathcal{G}}^{\dagger} \widehat{\mathcal{G}}|\Phi\rangle
$$

The central (c), tensor $(t \tau)$ and spin-isospin ($\sigma \tau$) correlations are responsible for majority of the strength

$$
\widehat{\mathcal{G}} \approx \widehat{\mathcal{S}}\left(\prod_{i<j}^{A}[1+\widehat{l}(i, j)]\right)
$$

with $\widehat{\mathcal{S}}$ the symmetrization operator and

$$
\hat{I}(i, j)=-g_{c}\left(r_{i j}\right)+f_{t \tau}\left(r_{i j}\right) \widehat{S}_{i j}\left(\vec{\tau}_{i} \cdot \vec{\tau}_{j}\right)+f_{\sigma \tau}\left(r_{i j}\right)\left(\vec{\sigma}_{i} \cdot \vec{\sigma}_{j}\right)\left(\vec{\tau}_{i} \cdot \vec{\tau}_{j}\right) .
$$

$g_{c}\left(r_{i j}\right), f_{t \tau}\left(r_{i j}\right)$ and $f_{\sigma \tau}\left(r_{i j}\right)$ are the respective correlation functions
Correlation functions: (Gearhart, 1994), (Pieper, Wiringa, and Pandharipande, 1992)

Short-range correlations

Transition matrix elements between correlated states $|\Psi\rangle$ can be written as ones between uncorrelated states $|\Phi\rangle$, with an effective transition operator

$$
\left\langle\Psi_{f}\right| \widehat{J}_{\mu}^{\mathrm{nucl}}\left|\Psi_{i}\right\rangle=\frac{1}{\sqrt{\mathcal{N}_{i} \mathcal{N}_{f}}}\left\langle\Phi_{f}\right| \widehat{J}_{\mu}^{\mathrm{eff}}\left|\Phi_{i}\right\rangle
$$

with

$$
\widehat{J}_{\mu}^{\text {eff }}=\widehat{\mathcal{G}}^{\dagger} \widehat{J}_{\mu}^{\text {nucl }} \widehat{\mathcal{G}}=\left(\prod_{j<k}^{A}[1+\widehat{l}(j, k)]\right)^{\dagger} \widehat{J}_{\mu}^{\text {nucl }}\left(\prod_{l<m}^{A}[1+\widehat{l}(l, m)]\right) .
$$

In the IA, the many-body nuclear current can be written as a sum of one-body operators

$$
\widehat{J}_{\lambda}^{\mathrm{eff}}=\left(\prod_{j<k}^{A}[1+\widehat{l}(j, k)]\right)^{\dagger} \sum_{i=1}^{A} \widehat{\jmath}_{\lambda}^{[1]}(i)\left(\prod_{l<m}^{A}[1+\widehat{l}(l, m)]\right) .
$$

Short-range correlations

Use the fact that SRC is a short-range phenomenon
\rightarrow Terms linear in the correlation operator are retained
\rightarrow A-body operator \rightarrow 2-body operator

$$
\widehat{\jmath}_{\lambda}^{\text {eff }} \approx \underbrace{\sum_{i=1}^{A} \widehat{\jmath}_{\lambda}^{[1]}(i)}_{\text {one-body(IA) }}+\underbrace{\sum_{i<j}^{A} \widehat{\jmath}_{\lambda}^{[1], \text { in }}(i, j),+\left[\sum_{i<j}^{A} \widehat{\jmath}_{\lambda}^{[1], \text { in }}(i, j)\right]^{\dagger}}_{\text {two-body (SRC) }}
$$

where

$$
\widehat{J}_{\lambda}^{[1], \text {,in }}(i, j)=\left[\widehat{J}_{\lambda}^{[1]}(i)+\widehat{J}_{\lambda}^{[1]}(j)\right] \widehat{\jmath}(i, j)
$$

\rightarrow Effective nuclear current is the sum of a one-body (IA) and two-body (SRC) current

Short-range correlations

The 1p1h (top) and 2p2h (bottom) diagrams considered. The top left diagram shows the 1p1h channel in the IA.

SRC results - Inclusive ${ }^{12} \mathrm{C}\left(\nu_{\mu}, \mu^{-}\right)$

\rightarrow Small decrease of $1 p 1 h$ channel due to SRCs
\rightarrow Inclusive $2 p 2 h$ appears as a broad background to $1 p 1 h$

Meson-exchange currents

The seagull and pion-in-flight currents.

Meson-exchange currents

The Δ currents (top) and correlation currents (bottom).

MEC results - Inclusive ${ }^{12} \mathrm{C}\left(\nu_{\mu}, \mu^{-}\right)$

\rightarrow Small increase of $1 p 1 h$ channel due to MECs
\rightarrow Inclusive $2 p 2 h$ appears as a broad background to $1 p 1 h$

SRS + MEC

Extend the current model with MECs

SRC + MEC results - Inclusive ${ }^{12} \mathrm{C}\left(\nu_{\mu}, \mu^{-}\right)$

\rightarrow Effect of MECs largest for small θ_{μ}, SRCs for larger θ_{μ} in $1 p 1 h$ channel
\rightarrow Inclusive $2 p 2 h$ appears as a broad background to $1 p 1 h$

Comparison with MiniBooNE data

MiniBooNE 'CCQE-like' data from Phys.Rev.D 81 (2010) 092005

CRPA results are from Phys.Rev.C 94 (2016) 054609

Comparison with T2K data

CRPA results are from Phys.Rev.C 94 (2016) 054609

Exclusive $A\left(\nu_{\mu}, \mu^{-} N_{a} N_{b}\right)$

$\mathrm{d} \sigma / \mathrm{d} \epsilon_{\mu} \mathrm{d} \Omega_{\mu} \mathrm{d} T_{a} \mathrm{~d} \Omega_{a} \mathrm{~d} \Omega_{b}\left(10^{-45} \mathrm{~cm}^{2} / \mathrm{MeV}^{2}\right)$

The ${ }^{12} \mathrm{C}\left(\nu_{\mu}, \mu^{-} N_{a} N_{b}\right)$ cross section at $\epsilon_{\nu_{\mu}}=750 \mathrm{MeV}, \epsilon_{\mu}=550 \mathrm{MeV}, \theta_{\mu}=15^{\circ}$ and $T_{\mathrm{p}}=50 \mathrm{MeV}$ for in-plane kinematics $\left(q=268 \mathrm{MeV} / \mathrm{c}, x_{B}=0.08\right)$. The bottom panel shows $P_{12}<300 \mathrm{MeV} / \mathrm{c}$.

Summary

\rightarrow The Ghent group provides a powerful model capable of calculating various contributions to the 2 p 2 h final states
\rightarrow The MEC calculation misses Δ-currents and needs to be further developed
\rightarrow Efforts are done to implement such model in Monte Carlo event generators so it can be used in experimental analyses

Collaborators

Ghent group

- Natalie Jachowicz
- Raúl González Jiménez
- Alexis Nikolakopoulos
- Jannes Nys
- Vishvas Pandey
- Tom Van Cuyck
- Nils Van Dessel
and many more...

