First Computation in ChiFT

Krzysztof M. Graczyk

Institute of Theoretical Physics University of Wrocław Poland

January 24, 2011

PART I

PreCHiFT

First Lecture

- "Jak to ze Inem było..." \Rightarrow Rather about σ -linear model than about ChiFT today.
 - $SU_L(2) \times SU_R(2) \leftrightarrows SU_A(2) \times SU_V(2);$
 - ► Goldberger-Treiman Relation ⇒ PCAC;
 - ►

$$SU_A(2) \times SU_V(2) \longrightarrow SU_V(2);$$

Symmetry - Breaking

Motivation

▶ Single Pion Production in ν -N, and ν -A scattering and other applications...

$\ensuremath{\textbf{Chi}}\xspace{\ensuremath{\textbf{chi}}}\xspace{\$

"The purpose of the effective lagrangian method is to represent in a simple way the dynamical content of a theory in the low energy limit, where effects of the heavy particles can be incorporated into a few constants." Dynamics of the Standard Model, Donghue, Golwich, Holstein

General Plan of Attack

- Propose the most general set of lagrangians consistent with the symmetries of the theory, as well as with the symmetry breaking patterns of the general model (in our case QCD);
- At low energies the relevant, effective degrees of freedom in QCD are no longer the elementary quarks and gluons, but composite hadrons.

QCD as a reference model for understanding the strong interactions

QCD as the SU(N) gauge field theory

$$\mathcal{L}_{QCD} = i \overline{q}_f \hat{D} q_f - \overline{q}_f M q_f - \frac{1}{2} \text{Tr} G_{\mu\nu} G^{\mu\nu}, \qquad (1)$$

where q_f is the SU(N) vector field, containing N Dirac spinors, describing N quarks. M is the mass matrix.

$$\hat{D} = \gamma^{\mu} \left(\partial_{\mu} - igA_{\mu} \right) \tag{2}$$

$$G_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - ig[A_{\mu}A_{\nu}]$$
(3)

$$A_{\mu} = \sum_{a=1}^{N^2-1} A_{\mu}^{a} T^{a}$$
 (4)

and T^{a} 's are the su(N) generators.

What about Global Symmetries?

- ► U(1) global symmetry;
- If one assumes that the quarks have the same masses:
 - SU(N) global symmetry.

$$q_f \rightarrow Uq_f, \quad U \in SU(N).$$

▶ In reality $m_u \approx m_d$: SU(2) global isospin symmetry.

Left-, Right- handed chiral operators

$$P_L = \frac{1}{2} (1 - \gamma_5), \quad P_R = \frac{1}{2} (1 + \gamma_5).$$
 (5)

Notice that

$$P_L P_R = P_R P_L = 0, \quad P_L^2 = P_L, \quad P_R^2 = P_R, \quad q_{i,L(R)} = P_{L(R)} q_i$$
 (6)

Than we have trivially obtained formulae:

$$q_i = q_{i,L} + q_{i,R}, \quad \overline{q}_i q_i = \overline{q}_{i,L} q_{i,R} + \overline{q}_{i,R} q_{i,L}, \quad \overline{q}_i \gamma_\mu q_i = \overline{q}_{i,R} \gamma_\mu q_{i,R} + \overline{q}_{i,L} \gamma_\mu q_{i,L}.$$
(7)

Limit $m_f \rightarrow 0 SU(N) \rightarrow SU_L(N) \times SU_R(N)$

The massless quark QCD lagrangian reads

$$\mathcal{L}_{QCD} = \underbrace{i\overline{q}_{f,L}\hat{D}q_{f,L}}_{SU(N)-lefthanded} + \underbrace{i\overline{q}_{f,R}\hat{D}q_{f,R}}_{SU(N)-righthanded} - \frac{1}{2}\mathrm{Tr}\,G_{\mu\nu}\,G^{\mu\nu}.$$
(8)

$SU_L(N) \times SU_R(N)$

one can introduce the $SU(N)_L$ and $SU(N)_R$ matrices

$$U_{L,R} = P_{L,R} \exp\left[i \sum_{a=1}^{N^2 - 1} \theta_{L,R}^a T^a\right], \qquad (9)$$

 $\theta_{L,R}$'s are the real numbers.

The Lagrangian formalism

Consider the model defined by the action:

$$S = \int_{V} d^{4} \mathcal{L}(\phi_{i}, \partial \phi_{i}), \quad \delta S = 0?$$
 (10)

It is convenient to assume the Drichlet (worked in Wrocław for a while) conditions i.e. the initial and final field configurations are known

$$0 = \left. \frac{\delta \mathcal{L}}{\delta \partial_0 \phi} \right|_{t=t_i} = \left. \frac{\delta \mathcal{L}}{\delta \partial_0 \phi} \right|_{t=t_f} = \left. \frac{\delta \mathcal{L}}{\delta \partial \vec{\phi}} \right|_{\partial V}.$$
(11)

It leads to the Euler-Lagrange equations:

$$0 = \frac{\delta \mathcal{L}}{\delta \phi_i} - \partial_\mu \frac{\delta \mathcal{L}}{\delta \partial_\mu \phi_i}.$$
 (12)

.

Canonical Momentum, Hamiltonian, and quantization

Canonical Momentum

$$\Pi_{j}(x,t) = \frac{\delta \mathcal{L}}{\delta(\partial_{0}\phi_{j})}$$
(13)

Hamiltonian

$$\mathcal{H} = \sum_{i} \pi_{i} \partial_{0} \phi_{i} - \mathcal{L}$$
(14)

Quantization

$$[\phi_i(x,t),\Pi_j(y,t)] = i\delta_{ij}\delta^{(3)}(x-y)$$
(15)

Symmetry and Noether Currents

Symmetry of the model

SU(2) is generated by 3 Pauli matrices

$$SU(2) \ni U \approx 1 + i \sum_{a=1}^{3} \theta^{a} \frac{\tau^{a}}{2}, \quad \left[\frac{\tau^{a}}{2}, \frac{\tau^{b}}{2}\right] = i \epsilon^{abc} \frac{\tau^{c}}{2}, \quad \theta^{a} \in \mathbb{R}$$
(16)

We can impose on the model two types of the symmetry:

▶ the invariance of the action (used in the energy-tensor derivation):

$$\delta_G S = 0? \tag{17}$$

the invariance of the lagrangian (the second case is more often met! e.g. isospin symmetry).

$$\delta_{SU(2)}\mathcal{L} = 0, \tag{18}$$

Noether Current

$$\delta_{SU(2)}\phi_i \approx i\theta^a \frac{\tau^a_{ij}}{2}\phi_j \tag{19}$$

$$J^{\mu}_{a} = \underbrace{\frac{\delta \mathcal{L}}{\delta(\partial_{\mu}\phi_{i})} i \frac{\tau^{a}_{ij}}{2} \phi_{j}}_{0} \quad , 0 = \partial_{\mu}J^{\mu}_{a}, \qquad (20)$$

Conserved-Noether-Current

$$J_0^a = i \prod_j \frac{\tau_{ij}^a}{2} \phi_j, \quad \underbrace{Q^a = \int d^3 x J_0^a(x)}_{\text{conserved charged}}$$
(21)

Useful Properties

$$\left[Q^{\mathfrak{d}}, Q^{\mathfrak{b}}\right] = i\epsilon^{\mathfrak{d}\mathfrak{b}\mathfrak{c}}Q^{\mathfrak{c}}, \quad \left[Q^{\mathfrak{d}}, \phi_{i}\right] = i\frac{\tau_{ij}^{\mathfrak{d}}}{2}\phi_{j} \tag{22}$$

Current operators form the basis of the su(2) Lie group algebra.

Goldstone Theorem

Consider the global continues symmetry group $G \ni U$, and assume that the H_0 is invariant under it.

$$UH_0 U^{\dagger} = H_0. \tag{23}$$

It leads to the natural degeneracy of the energy eigenstates. Let $\mid 0 \rangle$ is the ground state. If

$$U \mid 0 \rangle \neq \mid 0 \rangle$$
 (24)

we have the spontaneous symmetry breakdown.

$$\Rightarrow t^{a} \mid 0 \rangle \neq \mid 0 \rangle \Rightarrow Q^{a} \mid 0 \rangle \neq \mid 0 \rangle \Rightarrow \langle 0 \mid \phi^{i} \mid 0 \rangle \neq 0.$$
(25)

Quantum Mechanical Example

The infinite and finite wall potentials

- For the infinite potential case, the initial condition breaks spontaneously the parity symmetry!
- ▶ For the finite potential case, the tunneling of the particle is possible!

Goldstone Theorem in the SU(2) case

The breaking the global SU(2) symmetry leads to the existence in the formalism **three** (number of generators of the broken group) massless bosons. It is manifested by the non-vanishing the matrix elements:

$$\langle n \mid \phi(0) \mid 0 \rangle \neq 0, \quad \langle n \mid J(0) \mid 0 \rangle \neq 0.$$
 (26)

Goldstone Theorem

Classical Level If

$$\mathcal{L} = \mathcal{L}_0 - V, \Rightarrow \mathcal{H} = \mathcal{H}_0 + V.$$
⁽²⁷⁾

- The configuration which minimizes the potential will correspond to the ground state;
- In reality in order to perform the perturbation calculus one needs to consider small deviations from the minimal configuration.

Quantum Level

Much more complicated and need of special seminar to explain. The effective potential formalism.

Back to QCD for a moment...

The symmetry breaking mechanism will introduce massless particles.

$$SU(N)_L \times SU(N)_R \to SU(N).$$
 (28)

According to Goldstone theorem $N^2 - 1$ goldstone massless bosons have appeared. $SU_L(2) \times SU_R(2)$ global symmetry pattern

$$SU(2)_L \times SU(2)_R \to SU_V(2).$$
 (29)

- ▶ SU(2) (isospin gropu) has three generators \rightarrow three massless pions (π_+ , π_0 , π_-);
- Notice the appearance of the natural symmetry breaking mechanism in the QCD – quarks are massive.

Late fifties: π 's, μ - and β - decays

Historical Perspective

- Introduced to describe the strong interactions between nucleons in the nuclei (Yukawa, (1935), Nobel Prize (1949))
- ▶ Experimentally observed, (Powell et al., (1947), Nobel Prize (1950));
- Pions carry the strong attractive interaction between pair of nucleons;
- Pions belong to the adjoint representation of the SU(2) isospin group (triplet representation), while quarks up and down belong to the fundamental representation of the SU(2) group.
- Pions are massive.
- Fermi Model: muon-decay, and beta-decay;
- Goldberger-Treiman Relation (1958);
- Universality of the vector constant \rightarrow Conserved Vector Current, Feynman, Gell-Mann (1958);
- Partially Conserved Axial Current divergence of the axial current, Nambu (1960), Chou (1961), Gell-Mann and Levy (1960);

What effective theory we are searching for?

- Containing Pions as the fundamental degrees of freedom;
- ► Containing Nucleon fields, and the pion-Nucleon vertex in the lagrangian.
- ▶ The model must preserve the chiral symmetry (in the simplest case $SU_L(2) \times SU_R(2)$) with the symmetry breaking mechanism ($\rightarrow SU_V(2)$);
- > The mechanism for generation of the pions and nucleons masses.
- Extension of the model in order to include heavier baryons, and strange particles...

$\sigma\text{-models}$

Historical Origin

- Schwinger 1958, Polkinghorne 1958, Gell-Mann and Levy 1960;
- Model with pions and nucleons;
- Model which reproduces the Goldberger-Treiman formula (1958);
 - β and μ decays, by the same axial current;
 - divergence of the axial current;
 - ▶ relation between $G_p(Q^2)$ axial form factor and the $F_{\pi NN}$ form factor.

linear σ model

lagrangian

 σ isoscalar field, and three pions π^i , i=1,2,3 (pseudoscalars)

$$\mathcal{L}_{l-\sigma}(\mathbf{x}) = \frac{1}{2} \left[\partial_{\mu} \sigma \partial^{\mu} \sigma + \partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi} \right] + \overline{N} i \gamma^{\mu} \partial_{\mu} N - g \overline{N} \left(\sigma + i \gamma_{5} \vec{\tau} \cdot \vec{\pi} \right) N - V(\sigma, \vec{\pi}),$$
(30)

$$V(\sigma, \vec{\pi}) = -\frac{\mu^2}{2} \left(\sigma^2 + \vec{\pi}^2 \right) + \frac{\lambda}{4} \left(\sigma^2 + \vec{\pi}^2 \right)^2.$$
(31)

N = (p, n): the nucleon 1/2 isospin filed With right/left-handed fermion fields we get:

$$\mathcal{L}(x) = \frac{1}{2} \left[\partial_{\mu} \sigma \partial^{\mu} \sigma + \partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi} \right] + \overline{N}_{L} i \gamma^{\mu} \partial_{\mu} N_{L} + \overline{N}_{R} i \gamma^{\mu} \partial_{\mu} N_{R} - g \overline{N}_{L} \left(\sigma + i \vec{\tau} \cdot \vec{\pi} \right) N_{R} - g \overline{N}_{R} \left(\sigma - i \vec{\tau} \cdot \vec{\pi} \right) N_{L} - V(\sigma, \vec{\pi})$$
(32)

- Model with massless nucleon fields, and massless meson fields;
- We need to generate the nucleon mass, may be pion masses?

It is convenient to introduce the 2×2 matrix to describe the meson fields in the collective way:

$$\Sigma = \sigma + i\vec{\tau} \cdot \vec{\pi}.\tag{33}$$

Then the lagrangian can be rewritten as it follows:

$$\mathcal{L}(x) = \frac{1}{4} \operatorname{Tr} \left[\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger} \right] + \overline{N}_{L} i \gamma^{\mu} \partial_{\mu} N_{L} + \overline{N}_{R} i \gamma^{\mu} \partial_{\mu} N_{R} - g \overline{N}_{L} \Sigma N_{R} - g \overline{N}_{R} \Sigma^{\dagger} N_{L} + \frac{\mu^{2}}{4} \operatorname{Tr} \left(\Sigma \Sigma^{\dagger} \right) - \frac{\lambda}{16} \operatorname{Tr} \left(\Sigma \Sigma^{\dagger} \right)^{2}.$$
(34)

$SU_V(2)$ invariance of σ -linear model

$$SU_V(2) \ni V = \exp\left[\frac{i}{2}\vec{\tau}\cdot\vec{\theta}\right]$$
 (35)

The nucleon and meson fields transform like

$$N \to N' = VN, \quad N_{L,R} \to N'_{L,R} = VN_{L,R}, \quad \Sigma \to \Sigma' = V\Sigma V^{\dagger}$$
 (36)

It is easy to compute that

$$\delta N \approx N' - N = i \frac{\vec{\tau} \cdot \vec{\theta}}{2} N \tag{37}$$

$$\Sigma' \simeq \left(1 + i\frac{\vec{\tau}\cdot\vec{\theta}}{2}\right)(\sigma + i\vec{\tau}\cdot\vec{\pi})\left(1 - i\frac{\vec{\tau}\cdot\vec{\theta}}{2}\right) = \sigma - \left[\frac{\vec{\tau}\cdot\vec{\theta}}{2}, \vec{\tau}\cdot\vec{\pi}\right]$$
$$= \sigma + i\vec{\tau}\cdot\vec{\pi} - i(\vec{\theta}\times\vec{\pi})\cdot\vec{\tau}, \qquad (38)$$

$$\left[\frac{\vec{\tau}\cdot\vec{\theta}}{2},\vec{\tau}\cdot\vec{\pi}\right] = 2\theta_i\pi^k \left[\frac{\tau_i}{2},\frac{\tau_k}{2}\right] = 2i\epsilon_{ikj}\frac{\tau_j}{2}\theta_i\pi^k = i(\vec{\theta}\times\vec{\pi})\cdot\vec{\tau}.$$
 (39)

We see that:

$$\delta \Sigma = \delta \sigma + i \vec{\tau} \cdot \delta \vec{\pi} \tag{40}$$

$$\delta \sigma = 0, \qquad (41)$$

$$\delta \vec{\pi} = -\vec{\theta} \times \vec{\pi}. \tag{42}$$

Vector Noether Current

$$\vec{\theta} \cdot \vec{V}^{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} N)} \delta N + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \sigma)} \delta \sigma + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \pi)} \delta \pi$$
(43)

$$= -\overline{N}\gamma^{\mu}\frac{\vec{\tau}\cdot\vec{\theta}}{2}N - \partial^{\mu}\vec{\pi}\cdot(\vec{\theta}\times\vec{\pi})$$
(44)

$$\vec{V}^{\mu} = -\overline{N}\gamma^{\mu}\frac{\vec{\tau}}{2}N - \partial_{\mu}\vec{\pi} \times \vec{\pi}$$
(45)

$$V_{k}^{\mu} = -\overline{N}\gamma^{\mu}\frac{\tau_{k}}{2}N - \partial_{\mu}\pi_{i}\epsilon_{ijk}\pi_{j}$$

$$\tag{46}$$

$$= -\overline{N}\gamma^{\mu}T_{k}^{F}N - \underbrace{\partial_{\mu}\vec{\pi}^{T}T_{k}^{A}\vec{\pi}}_{(47)}$$

Fundamental Adjont

$SU_A(2)$ invariance

$$A = \exp\left[i\frac{\vec{\beta}\cdot\vec{\tau}}{2}\gamma_5\right].$$
(48)

The fields transform as

$$N \rightarrow N' = AN, \quad N'_L = AN_L = V^{\dagger}N_L, \quad N'_R = AN_R = VN_R.$$
 (49)

here

$$V = \exp\left[i\frac{\vec{\beta}\cdot\vec{\tau}}{2}\right].$$
 (50)

Notice that in order to get the expression

$$\left(\overline{N}_{L}\Sigma N_{R}\right)' = \overline{N'}_{L}\Sigma' N'_{R} = \overline{N}_{L}V\Sigma' V N_{R}$$
(51)

invariant, one needs $\boldsymbol{\Sigma}$ field transforms like

$$\Sigma \to \Sigma' = V^{\dagger} \Sigma V^{\dagger}.$$
 (52)

Now the variance of the nucleon filed reads

$$\delta_5 N = i \frac{\vec{\beta} \cdot \vec{\tau}}{2} \gamma_5 N \tag{53}$$

The variation of the mesons fields read

$$\Sigma' \simeq \left(1 - i\frac{\vec{\tau}\cdot\vec{\beta}}{2}\right)(\sigma + i\vec{\tau}\cdot\vec{\pi})\left(1 - i\frac{\vec{\tau}\cdot\vec{\beta}}{2}\right)$$
(54)

$$= \sigma + i\vec{\tau} \cdot \vec{\pi} - 2i\frac{\vec{\tau} \cdot \vec{\beta}}{2}\sigma + \frac{\vec{\tau} \cdot \vec{\beta}}{2}\vec{\tau} \cdot \vec{\pi} + \vec{\tau} \cdot \vec{\pi}\frac{\vec{\tau} \cdot \vec{\beta}}{2}$$
(55)
$$= \sigma + i\vec{\tau} \cdot \vec{\pi} - \underbrace{i\vec{\tau} \cdot \vec{\beta}\sigma}_{} + \underbrace{\vec{\pi} \cdot \vec{\beta}}_{} .$$
(56)

it is in σ basis it is proportional to 1

The so-called "axial" variation of the σ and pions fields read

$$\delta_5 \Sigma = \delta_5 \sigma + i \vec{\tau} \cdot \delta_5 \vec{\pi} \tag{57}$$

$$\delta_5 \sigma = \vec{\pi} \cdot \vec{\beta} \tag{58}$$

$$\delta_5 \vec{\pi} = -\vec{\beta} \sigma. \tag{59}$$

Axial Noether Current

Now the axial current reads

$$\vec{\beta} \cdot \vec{A}^{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} N)} \delta N + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \sigma)} \delta \sigma + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \pi)} \delta \pi$$
(60)

$$= -\overline{N}\gamma^{\mu}\frac{\vec{\tau}\cdot\vec{\beta}}{2}\gamma_{5}N + \partial^{\mu}\sigma\vec{\pi}\cdot\vec{\beta} - \partial^{\mu}\vec{\pi}\cdot\vec{\beta}\sigma$$
(61)

$$\vec{A}^{\mu} = -\overline{N}\gamma^{\mu}\frac{\vec{\tau}}{2}\gamma_{5}N + \partial_{\mu}\sigma\vec{\pi} - \sigma\partial_{\mu}\vec{\pi}.$$
(62)

 $SU_L(2) \times SU_R(2)$

Lagrangian Once Again

$$\mathcal{L}(x) = \frac{1}{4} \operatorname{Tr} \left[\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger} \right] + \overline{N}_{L} i \gamma^{\mu} \partial_{\mu} N_{L} + \overline{N}_{R} i \gamma^{\mu} \partial_{\mu} N_{R} - g \overline{N}_{L} \Sigma N_{R} - g \overline{N}_{R} \Sigma^{\dagger} N_{L} + \frac{\mu^{2}}{4} \operatorname{Tr} \left(\Sigma \Sigma^{\dagger} \right) - \frac{\lambda}{16} \operatorname{Tr} \left(\Sigma \Sigma^{\dagger} \right)^{2}.$$
(63)

$$N_R \rightarrow N'_R = RN_R$$
 (64)

$$N_L \rightarrow N'_L = L N_L$$
 (65)

$$\Sigma \rightarrow \Sigma' = L\Sigma R^{\dagger}$$
 (66)

$$\rightarrow L\Sigma$$
 (67)

$$\rightarrow \Sigma R^{\dagger},$$
 (68)

where the right- and left- handed transformations are defined as it follows

$$R = \exp\left[i\frac{i\vec{\gamma}\cdot\vec{\tau}}{2}\right], \quad \text{and} \quad L = \exp\left[i\frac{i\vec{\eta}\cdot\vec{\tau}}{2}\right]$$
(69)

- with $\gamma = \eta = \theta$ for the vector transformations;
- with $\gamma = -\eta = \beta$ for the axial transformations;

Righthanded Current

$$N'_R \simeq \left[1+i\frac{\vec{\gamma}\cdot\vec{\tau}}{2}\right]N_R = N_R + i\frac{\vec{\gamma}\cdot\vec{\tau}}{2}N_R$$
 (70)

$$N'_L = N_L \tag{71}$$

$$\Sigma' = \Sigma R^{\dagger} \simeq (\sigma + i\vec{\tau} \cdot \vec{\pi}) \left[1 - i\frac{\vec{\gamma} \cdot \vec{\tau}}{2} \right] = \Sigma - i\sigma\frac{\vec{\gamma} \cdot \vec{\tau}}{2} + \frac{(\vec{\tau} \cdot \vec{\pi})(\vec{\gamma} \cdot \vec{\tau})}{2}$$
(72)
$$= \Sigma - i\sigma\frac{\vec{\gamma} \cdot \vec{\tau}}{2} + \frac{\vec{\pi} \cdot \vec{\gamma}}{2} + i\frac{(\vec{\pi} \times \vec{\gamma}) \cdot \vec{\tau}}{2}$$
(73)

Hence, we have

$$\delta_R N_R = i \frac{\vec{\gamma} \cdot \vec{\tau}}{2} N_R \tag{74}$$

$$\delta_R N_L = 0 \tag{75}$$

$$\delta_R \sigma = \frac{\pi \cdot \gamma}{2} \tag{76}$$

$$\delta_R \vec{\pi} = -\sigma \frac{\vec{\gamma}}{2} + \frac{\vec{\pi} \times \vec{\gamma}}{2}$$
(77)

Lefthanded Current

Similarly we perform computations for the left-handed symmetry, namely

$$\delta_L N_L = i \frac{\vec{\eta} \cdot \vec{\tau}}{2} N_L \tag{78}$$

$$\delta_L N_R = 0 \tag{79}$$

$$\delta_L \sigma = -\frac{\vec{\pi} \cdot \vec{\eta}}{2} \tag{80}$$

$$\delta_L \vec{\pi} = \sigma \frac{\vec{\eta}}{2} + \frac{\vec{\pi} \times \vec{\eta}}{2}$$
(81)

The Vector-Axial and Left-Right-Handed Currents

The Neother currents read

$$-\vec{R}^{\mu} = -\overline{N}_{R}\gamma^{\mu}\frac{\vec{\tau}}{2}N_{R} + \frac{1}{2}\partial^{\mu}\sigma\vec{\pi} + \left[\frac{\vec{\pi}\times\partial^{\mu}\vec{\pi}}{2} - \frac{1}{2}\sigma\partial^{\mu}\pi\right]$$
(82)

$$-\vec{L}^{\mu} = -\overline{N}_{L}\gamma^{\mu}\frac{\vec{\tau}}{2}N_{L} - \frac{1}{2}\partial^{\mu}\sigma\vec{\pi} + \left[\frac{\vec{\pi}\times\partial^{\mu}\vec{\pi}}{2} + \frac{1}{2}\sigma\partial^{\mu}\pi\right]$$
(83)
(84)

Notice relation with the vector and axial currents

$$\vec{V}^{\mu} = R^{\mu} + L^{\mu} = \overline{N}\gamma^{\mu}\frac{\vec{\tau}}{2}N - \vec{\pi} \times \partial^{\mu}\vec{\pi}$$
(85)

$$\vec{A}^{\mu} = R^{\mu} - L^{\mu} = \overline{N}\gamma^{\mu}\gamma_{5}\frac{\vec{\tau}}{2}N - \partial^{\mu}\sigma\vec{\pi} + \sigma\partial^{\mu}\pi$$
(86)

Charged Generators

Let define charge operators, defined as

$$Q^{i} = \int d^{3}x V_{0}^{i}(x), \quad Q^{5i} = \int d^{3}x A_{0}^{i}(x).$$
 (87)

With the help of relation:

$$\Pi_{N} = N^{\dagger}, \quad \{N_{s}(x,t), N_{r}^{\dagger}(y,t)\} = \delta^{3}(x-y)\delta_{sr}, \quad N = p \text{ or } n.$$
(88)

$$\Pi_{\pi_i} = \partial_0 \pi^i, \quad [\pi^i(x,t), \Pi_{\pi_j}(y,t)] = i \delta_{ij} \delta^3(x-y), \tag{89}$$

$$\Pi_{\sigma} = \partial_0 \sigma, \quad [\sigma(x,t), \Pi_{\sigma}(y,t)] = i\delta^3(x-y), \tag{90}$$

$$[AB, CD] = -AC \{D, B\} + A \{B, C\} D - C \{A, D\} + \{C, A\} DB$$
(91)

one gets

$$[Q^i, Q^j] = i\epsilon_{ijk}Q^k \tag{92}$$

In the same way one can show that

$$[Q^{i}, Q^{5j}] = i\epsilon_{ijk}Q^{5k}, \quad [Q^{5i}, Q^{5j}] = i\epsilon_{ijk}Q^{k}$$
(93)