Kinematics of 2N/3N knock-out mechanism

Jan T. Sobczyk

Wrocław University

Wrocław, January 25, 2016

Motivation

The starting point: plots from Fomin et al paper shown by Wim Cosyn during his seminar:

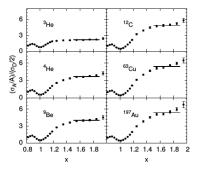


FIG. 2: Per-nucleon cross section ratios vs x at $\theta_e = 18^{\circ}$.

Formin et al. (JLab Hall C), PRL108 092502

- inclusive data
- ratio wrt deuteron
- plateau is claimed to tell us about SRC pairs

What is going on?

Kinematics of inclusive electron nucleon/nucleus scattering

We can choose among a variety of kinematic variables. Initial and final state electron: $k^{\mu} = (E, \vec{k}), \ k'^{\mu} = (E', \vec{k}').$

• energy transfer
$$\omega = E - E'$$
,

• momentum transfer
$$ert ec q ert = ec ec k - ec k' ert,$$

• 4-momentum transfer
$$Q^2=ec q^2-\omega^2\geq 0$$
 ,

Bjorken variable
$$x = \frac{Q^2}{2M\omega}$$
,

...

Any two of them may be chosen as independent.

Kinematics of inclusive electron nucleon/nucleus scattering Interesting properties of x:

• in the case of free nucleon scattering $x \le 1$: Invariant hadronic mass W:

$$W^2 = (M + \omega)^2 - q^2 \ge M^2 \qquad \Rightarrow \qquad 2M\omega \ge Q^2 \qquad \Rightarrow \qquad x \le 1$$

- x = 1 \Leftrightarrow elastic process
- x < 1 \Leftrightarrow inelastic process

In the case of nucleus target, we may have x > 1.

The strategy

- identify kinematical region where one-body mechanism is impossible
- look for non-zero cross section in this region.

Technical details:

- use ω, q variables,
- consider Fermi motion and (constant) binding energy B
- identify a region in ω , q such that it is impossible to get $W \ge M$.

5/23

э

・ロト ・四ト ・ヨト ・ヨト

The most favorable (highest W) configuration is that of antiparallel q
and p
 (target nucleon momentum)

•
$$W_{max}^2 = (\tilde{\omega} + E_p)^2 - (q - p)^2 < M^2$$
, $E_p = \sqrt{M^2 + p^2}$, $\tilde{\omega} = \omega - B$,

- $\scriptstyle \bullet$ in local Fermi gas model maximal nucleon momentum in $^{12}{\rm C}$ is $\sim 270~{\rm MeV/c}$
- look for a maximum of $f(p) = (\tilde{\omega} + E_p)^2 (q p)^2$ in the region $p \in [0, 270]$ MeV/c.

6/23

イロト イロト イヨト イヨト 三日

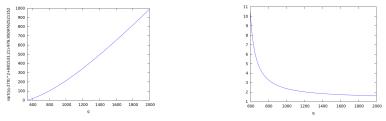
- derivative $f'(p) = 2(\tilde{\omega} + E_p)\frac{p}{E_p} + 2(q-p)$
- for q > p always positive

• in the whole region we solve $(\tilde{\omega} + E_{\rho})\frac{\rho}{E_{\rho}} + (q - \rho) = 0$

$$p(\tilde{\omega}+E_p)=(p-q)E_p\Rightarrow p\tilde{\omega}=-qE_p$$

- f(p) is monotonic function of p
- the maximal value is at p_F and the condition is $(\tilde{\omega} + E_F)^2 (q p_F)^2 < M^2$ i.e.

 $ilde{\omega} < \sqrt{M^2 + (q - p_F)^2} - E_F$.


7/23

イロト イロト イヨト イヨト 三日

How to express this condition in terms of Bjorken x variable? At fixed q:

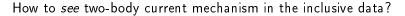
$$x(\omega)=rac{q^2-\omega^2}{2M\omega}, \qquad x'(\omega)=rac{-2M\omega^2-2Mq}{2M^2\omega^2}<0,$$

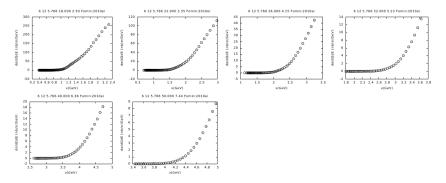
and the minimal value of x is at the maximal ω .

 $\omega_{max}(q)$

It is clear that in the inclusive data a signal of the two-body mechanism can only be found at large Bjorken x.

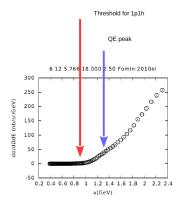
8/23


By digging in the electron scattering data e.g. on 12 C one can find non-zero cross section in the one-body forbidden region.


E [GeV]	Θ (deg)	QE peak (GeV)	thr 1-body (GeV)	data (GeV)
5.766	50	3.96	3.53	\geq 3.44
5.766	40	3.4	2.92	≥ 2.63
5.766	32	2.78	2.28	≥ 1.8
5.766	26	2.21	1.72	≥ 1.13
5.766	22	1.78	1.32	≥ 0.7
5.766	18	1.33	0.925	≥ 0.39

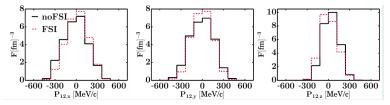
In particular we look at E = 5.766 GeV results at various angles.

The numbers in in last three columns are values of energy transfer.


http://faculty.virginia.edu/qes-archive/index.html

10/23

э


イロト 不得下 イヨト イヨト

<ロ>・(ア)・(を)・(を)、またのので 11/23

If 1p-1h mechanism is kinematically forbidden - what about 2p-2h?

- assume interaction occurs on correlated nucleon pairs
- nucleons move back to back in CM frame
- CM moves with a maximal momentum of $p_{max} \sim 300$ MeV/c

Cosyn seminar

We treat correlated pairs as quasi-deuterons.

The same arguments are applied. We must be unable to get invariant hadronic mass $W^2 > 4M^2$.

Again, the most favorable configuration is that of antiparallel momentum transfer and *quasi-deuteron* momenta.

The condition is

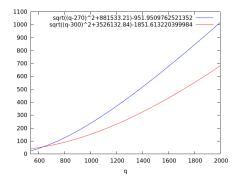
$$\max\left((\widetilde{\widetilde{\omega}}+\widetilde{E}_p)^2-(p-q)^2
ight)\leq 4M^2$$

with

$$\widetilde{\widetilde{\omega}} = \omega - 2B, \qquad \widetilde{E}_{p} = \sqrt{(2M)^{2} + p^{2}}.$$

In the same way as before we get

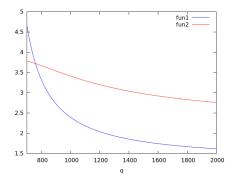
$$\widetilde{\widetilde{\omega}} < \sqrt{4M^2 + (q - p_{max})^2} - \sqrt{4M^2 + p_{max}^2}$$



13/23

イロト 不得下 イヨト イヨト

When we compare both conditions


 $\omega < \sqrt{M^2 + (q - p_F)^2} - E_F + B$. $\omega < \sqrt{4M^2 + (q - p_{max})^2} - \sqrt{4M^2 + p_{max}^2} + 2B$

There is a kinematical region where 1p-1h is impossible but 2p-2h is allowed.

14/23

1p-1h and 2p-2h regions in terms of Bjorken x:

There is a lot of room for 2p-2h.

Next steps

Two natural questions:

- is that possible to identify neutrino events in 1p-1h forbidden region?
- what happens at even smaller transfers of energy?

Next steps (1)

For neutrinos the obvious problem is that the beam is wideband

- off-line trick does not improve situation because we are looking for a kinemtical veto
- most favorable situation: MinibooNE beam extending roughly to 3GeV (well there is still a small tail above, but we neglect it).

Next steps (1)

	_																	_
$\cos \theta_{\mu} T_{\mu} (\text{GeV})$	0.2, 0.3	0.3, 0.4	0.4, 0.5	0.5, 0.6	0.6, 0.7	0.7, 0.8	0.8,0.9	0.9, 1.0	1.0, 1.1	1.1, 1.2	1.2, 1.3	1.3, 1.4	1.4, 1.5	1.5, 1.6	1.6, 1.7	1.7, 1.8	1.8, 1.9	1.9, 2.0
+0.9, +1.0	190.0	326.5	539.2	901.8	1288	1633	1857	1874	1803	1636	1354	1047	794.0	687.9	494.3	372.5	278.3	227.4
+0.8, +0.9	401.9	780.6	1258	1714	2084	2100	2035	1620	1118	783.6	451.9	239.4	116.4	73.07	41.67	36.55	_	_
+0.7, +0.8	553.6	981.1	1501	1884	1847	1629	1203	723.8	359.8	156.2	66.90	26.87	1.527	19.50	_	_	_	_
+0.6, +0.7	681.9	1222	1546	1738	1365	909.6	526.7	222.8	81.65	35.61	11.36	0.131	_	_	_	_	_	_
+0.5, +0.6	765.6	1233	1495	1289	872.2	392.3	157.5	49.23	9.241	1.229	4.162	_	_	_	_	_	_	_
+0.4, +0.5	871.9	1279	1301	989.9	469.1	147.4	45.02	12.44	1.012	_	_	_	_	_	_	_	_	_
+0.3, +0.4	910.2	1157	1054	628.8	231.0	57.95	10.69	_	_	_	_	_	_	_	_	_	_	_
+0.2, +0.3	992.3	1148	850.0	394.4	105.0	16.96	10.93	_	_	_	_	_	_	_	_	_	_	_
+0.1, +0.2	1007	970.2	547.9	201.5	36.51	0.844	_	_	_	_	_	_	_	_	_	_	_	_
0.0, +0.1	1003	813.1	404.9	92.93	11.63	_	_	_	_	_	_	_	_	_	_	_	_	_
-0.1, 0.0	919.3	686.6	272.3	40.63	2.176	_	_	_	_	_		_		_	_	_	_	_
-0.2,-0.1	891.8	503.3	134.7	10.92	0.071	_	_	_	_	_	_	_	_	_	_	_	_	_
-0.3,-0.2	857.5	401.6	79.10	1.947	_	_	_	_	_	_	_	_	_	_	_	_	_	_
-0.4,-0.3	778.1	292.1	33.69	_	_	_	_	_	_	_		_		_	_	_	_	_
-0.5,-0.4	692.3	202.2	17.42	_	_	_	_	_		_	_	_	_	_	_	_	_	_
-0.6,-0.5	600.2	135.2	3.624	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_
-0.7,-0.6	497.6	85.80	0.164	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_
-0.8,-0.7	418.3	44.84	—	_	_	—	_	_	_	_	_	_	_	_	_	_	—	_
-0.9,-0.8	348.7	25.82	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_
-1.0,-0.9	289.2	15.18	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

TABLE VI: The MiniBooNE ν_{μ} CCQE flux-integrated double differential cross section in units of 10^{-41} cm²/GeV in 0.1 GeV bins of T_{μ} (columns) and 0.1 bins of $\cos \theta_{\mu}$ (rows).

Which bins are kinematically forbidden for 1p-1h?

18/23

2

イロト イロト イヨト イヨト

Next steps (1)

$\cos \theta_{\mu} T_{\mu} (\text{GeV})$	0.2, 0.3	0.3, 0.4	0.4, 0.5	0.5, 0.6	0.6, 0.7	0.7, 0.8	0.8, 0.9	0.9, 1.0	1.0, 1.1	1.1, 1.2	1.2, 1.3	1.3, 1.4	1.4, 1.5	1.5, 1.6	1.6, 1.7	1.7, 1.8	1.8, 1.9	1.9, 2.0
+0.9, +1.0	190.0	326.5	539.2	901.8	1288	1633	1857	1874	1803	1636	1354	1047	794.0	687.9	494.3	372.5	278.3	227.4
+0.8, +0.9	401.9	780.6	1258	1714	2084	2100	2035	1620	1118	783.6	451.9	239.4	116.4	73.07	41.67	36.55	_	_
+0.7, +0.8	553.6	981.1	1501	1884	1847	1629	1203	723.8	359.8	156.2	66.90	26.87	1.527	19.50	_	_	_	
+0.6, +0.7	681.9	1222	1546	1738	1365	909.6	526.7	222.8	81.65	35.61	11.36	0.131	_	—				—
+0.5, +0.6	765.6	1233	1495	1289	872.2	392.3	157.5	49.23	9.241	1.229	4.162	_			_	_	_	_
+0.4, +0.5	871.9	1279	1301	989.9	469.1	147.4	45.02	12.44	1.012	_	_		_	_	_	_	_	_
+0.3, +0.4	910.2	1157	1054	628.8	231.0	57.95	10.69	—	—			—	_	_	_	_	—	_
+0.2, +0.3	992.3	1148	850.0	394.4	105.0	16.96	10.93	_		—	-	_	_	_	_	_	_	_
+0.1, +0.2	1007	970.2	547.9	201.5	36.51	0.844	_		-	-	_	_	_	_	_	_	_	_
0.0, +0.1	1003	813.1	404.9	92.93	11.63	_			_	_	_	_	_	_	_	_	_	_
-0.1, 0.0	919.3	686.6	272.3	40.63	2.176	_		—	_	_	_	_	_	_	_	_	_	_
-0.2,-0.1	891.8	503.3	134.7	10.92	0.071		—	_	_	_	_	_	_	_	_	_	_	_
-0.3,-0.2	857.5	401.6	79.10	1.947	_	_	_	_	_	_	_	_	_	_	_	_	_	_
-0.4,-0.3	778.1	292.1	33.69	_		—	_	_	_	_	_	_	_	_	_	_	_	_
-0.5,-0.4	692.3	202.2	17.42	_	-	_	_	—	—	_	—	_	_	_	_	_	—	_
-0.6,-0.5	600.2	135.2	3.624	_	_	_	_	_		_	_	_	_	_	_	_	_	_
-0.7,-0.6	497.6	85.80	0.164		_	_	_	_	_	_	_	_	_	_	_	_	_	_
-0.8,-0.7	418.3	44.84	_	_	—	_	_	_	—		—		_	—			—	_
-0.9,-0.8	348.7	25.82	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
-1.0,-0.9	289.2	15.18	_	_	-	_	-	—	-	_	-	_	_	-	_	_	-	_

Forbidden bins are far away from those with non-zero cross section.

19/23

2

イロト イロト イヨト イヨト

Next steps (2)

Look again carefully at the Cosyn seminar plot:

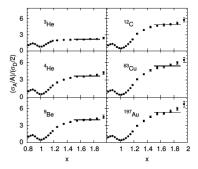


FIG. 2: Per-nucleon cross section ratios vs x at $\theta_e = 18^{\circ}$.

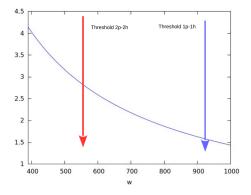
Fomin et al. (JLab Hall C), PRL108 092502

What happens at $x \sim 2$?

Next steps (2)

Cosyn answer is: We are approaching a threshold for deuteron 2p-2h mechanism; the denominator goes to zero. In fact $M \rightarrow 2M!$

E [GeV]	Θ (deg)	QE peak	thr 1p-1h	thr 2p-2h	data (GeV)
5.766	50	3.96	3.53	2.63	\geq 3.44
5.766	40	3.4	2.92	2.05	≥ 2.63
5.766	32	2.78	2.28	1.45	≥ 1.8
5.766	26	2.21	1.72	1.05	≥ 1.13
5.766	22	1.78	1.32	0.76	≥ 0.7
5.766	18	1.33	0.925	0.555	≥ 0.39


We add an extra column in our table:

Great! For 18° we are sensitive to mechanism beyond 2p-2h! 3N correlated triple?!

Next steps (2)

Final look. Fomin 18° data from the Bjorken x point of view.

In fact, 1p-1h forbidden region starts at $x \sim 1.5$. For SRC pairs threshold is moved because pairs are moving.

At larger x one can investigate $\frac{\sigma(A)}{\sigma({}^{3}\mathrm{He})}$ searching for $3\mathbb{N}$ correlated configurations.

э

Conclusions

Kinematical studies can be very instructive.

