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1 Consistuents of the Standard Model

The Standard Model (SM) of particle physics is a theory describing all known types of
elementary particles. This means all three generations of quarks and leptons, which form
the matter, as well as particles mediating their interactions. This excludes the gravitational
interaction, which remains a mystery from the point of particle physics.

Table 1: Leptons and quarks in the Standard Model.
Generation: 1 2 3

Quarks

u

m= 2.5[MeV ]

c

m= 1.29[GeV ]

t

m= 172.9[GeV ]

Q= 2

3
Q= 2

3
Q= 2

3

(up) s= 1

2
(charm) s= 1

2
(top) s= 1

2

d

m= 5[MeV ]

s

m= 100[MeV ]

b

m= 4.19[GeV ]

Q=−
1

3
Q=−

1

3
Q=−

1

3

(down) s= 1

2
(strange) s= 1

2
(bottom) s= 1

2

Leptons

e

m= 0.511[MeV ]

µ

m= 105.66[MeV ]

τ

m= 1.777[GeV ]

Q=−1 Q=−1 Q=−1

(electron) s= 1

2
(muon) s= 1

2
(tau) s= 1

2

νe
m<≈ 2[eV ]

νµ

m<≈ 2[eV ]
ντ

m<≈ 2[eV ]

Q=0 Q=0 Q=0

(electron neutrino) s= 1

2
(muon neutrino) s= 1

2
(tau neutrino) s= 1

2

In the table 1 we have listed the three generations of spin-1/2 paricles, which build
matter. They are called leptons and quarks. Only in the first generation there are particles,
which form our everyday surroundings: the u and d quarks form neutrons and protons,
together with the electrons they are constituents of atoms. All of these particles have some
common quantum numbers, like the electric charge Q (in the units of electron charge) of
up, charm and top quarks are the same, as well as charges of the electron, muon and tau.
But their masses are totall different. The first generation quarks and charged leptons are
lighter, than the ones from the second and the ones from the seond are lighter than the
ones from the third. Muon is about two hundred times heavier, than the electron, and the
taon is about sixteen times heavier, than muon. The same trend can be observed among
quarks: the up quark is rather light, it is supposed to have a free mass of around 5-6
electron masses, but the top quark is as heavy as the whole gold nucleus. Of course there
are no such things, as "free quarks", but experimentalists can give us some estimates. The
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Figure 1: Neutron β-decay before the discovery of quarks and introduction of W± bosons.

only exception are masses of the neutrinos, which are unknown until today. There are only
some rough constraints, which place the possible mass range below couple of eV. These
neutral Fermions are exceptionally light. Compared to the charged ones and to quarks they
can be treated as "massless" particles. All of the above listed matter constituents have
their antiparticles with opposite electric charge. The only exception is again the neutrino,
whose antiparticle must be neutral and we do not know yet, whether the neutrino is its
own antiparticle (Majorana/Dirac type) or not. The heavy particles tend to decay very
quickly into their lighter relatives. This is the reason, why in the everyday matter only first
generation contributes.
It is also worthy to notice, that all the detected neutrinos are left-handed chirality1 particles.
No right-handed neutrino interactions have ever been recorded! This has led, historically, to
a first Hamiltonian containing parity breaking terms. At that time most of the known weak
proceses were simple β-decays of neutrons into a proton, electron and electron antineutrino
(see fig. 1). Quarks and weak interaction bosons were unknown. Thus Feynman and
Gell-Mann ([1]) have proposed a Hamiltonian connecting the left-handed components of
fermionic currents (neutron-proton and electron-neutrino):

H =
GF√
2
4pLγµnLeLγ

µνL + h.c. (1.1)

=
GF√
2
pγµ(1− γ5)neγ

µ(1− γ5)ν + h.c.

with GF being the Fermi coupling constant and 1−γ5
2

- the left-handed helicity projection
operator. The above Hamiltonian, although succesive at low interaction energies, has a few
drawbacks. This type of interaction is nonrenormalizable, so one can consider loop-level
processes, like the one in fig. 1. And since the electromagnetic interaction is carried by
a photon, there must be a particle responsible for the weak one as well. Here we have no
information about it.

Table 2 contains the interaction carriers known in SM. There are three types of them:
strong interaction of quarks, electromagnetic interaction of charged particles, and weak in-
teraction concerning all spin-1/2 particles. Notice, that neutrinos interact here only weakly.
All of these interacitions are mediated by spin-1 bosons. The strong and electromagnetic
forces are mediated by massless, electrically neutral gluons and photons. The weak inter-
action bosons can carry an electric charge (W±) and are rather massive, having around 90

1Do not confuse the chirality with helicity . The first one is constructed by 1±γ5

2
projection operators

acting on Dirac spinors. The second one is just a projection of the spin on the direction of movement,

Σ̂p̂, with Σ̂ and p̂ being the spin and momentum operators. Since the neutrinos are massive, the fixed

helicity makes no sense: you can always find a rest frame, or a frame, where neutrino moves in the opposite

direction, changing the sign of its momentum, but not the third component of spin.
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Table 2: Interactions
Strong Electromagnetic Weak

g

m= 0

γ

m= 0

W±

m= 80.4[GeV ]

Z0

m= 91.2[GeV ]

Q=0 Q=0 Q=±1 Q=0

(gluon) s=1 (photon) s=1 s=1 s=1

proton masses. Their massiveness is responsible for the short range of weak force. Originally
the name "Standard Model" has been given to a theory of Weinberg, Salam ang Glashow
and it has explained the structure of weak and electromagnetic interactions. The strong
force is connected to a totally different symmetry group of the Lagrangian, then the other
two and is an independent add-on. So far nobody has found a way to add the gravitational
force to SM, so it is completely absent in these notes.

Last but not least is the Standard Model’s Most Wanted: the scalar Higgs boson. It is
responsible for the way SM is combining the weak and electromagnetic force as well as for the
appearance of particle masses (with some problems around the neutrino mass generation,
but it is beyond the scope of this part of the script). It has evaded all the experimental
efforts of finding it so far, but at the end of 2011 there have been signals from the LHC
experiment, that they may be close to finding it. If they succeed, then SM will become
the most successful theory of elementary particles. It has already predicted the existence of
neutral Z0 bosons or the heavy top quark. Theoretical assumption confirmed by the later
experiments!

2 How does it work?

Those, who have taken a look at the tables 1 and 2 may have alraedy noticed, that there
are some simple rules concerning the electric charges of particles and their interactions. The
"up" type quarks (u, c, t) have electric charges of +2/3e, whereas the "down" (d, s, b) type
ones have charges of −1/3e. The charhge difference between each generation constituents
is always e. The same rule applies to leptons. Electron, muon and taon have charges of −e
and neutrinos are always neutral. Weak W± bosons carry the ± charge and connect the
"up" and "down" quarks as well as the charged leptons and neutrinos. For example in the
β-decay in the nucleus a d quark changes into a u quark, emitting a virtual W− boson, which
decays into the e− and νe. This kind of weak interaction is called "Charged Current" (CC).
Neutral Current (NC) weak interaction was unknown before the introduction of Standard
model. Anyway, the electric charge is always conserved. Furthermore the weak interaction
connects only the left-handed particles, thus making the left-handed "up" and "down" or
electron and neutrino pairs into some kind of doublets, leaving their right-handed parts
as singlets (see fig. 2). And if we are talking about multiplets, conserved charges and
currents we will come to a discussion about symmetries (Noether’s theorem). Symmetries
in particle physics come together with an appropriate Lagrangian containing the known
phenomenological information. Here we need to generate four vector fields in order to
reproduce the full electromagnetic and weak interaction pattern. This will require us to
introduce local nonabelian gauge transformations for the left-handed doublets (SU(2)). And
because the weak charged current interactions concern only the left-handed fields, one has
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Figure 2: Neutron β-decay after the discovery of quarks and introduction of W± bosons.

to introduce an additional symmmetry group to incorporate the electromagnetic currents,
which work with both chiralities. This will be the U(1) "hypercharge" gauge. And in order
to reproduce the right charges and weak boson masses one will have to break the initial
symmetry. If you are confused with the "nonabelian gauge" and "symmetry breaking" in the
field theory, the appendices A and B will be devoted for a little bit "handwaving" explanation
of these problems. For more detailed discussion, containing step-by step derivations, see for
example [3] ,[4].

2.1 The Standard Model of Electroweak Interactions

Let us remind, that the weak charge changing interaction connects only left-handed com-
ponents of the local SU(2) symmetry doublets. These contain "up" and "down" types of
quarks or charged lepton and corresponding neutrino.

ψL =

(

uL
dL

)

or

(

l−L
νlL

)

(2.1)

The right-handed fields enter the Lagrangian as SU(2) singlets. We would like to unify
the weak and electromagnetic interactions. The problem of the SU(2) group is that here
it is responsible for the left-handed fermion interactions. The electromagnetic interaction
connects both left- and right-handed fields. Thus we need to introduce an extra symmetry
group U(1) of the hypercharge Y in order to incorporate the electrodynamics as well!
We shall start from the free massless Dirac Lagrangian:

L0(x) =
∑

i

iψ
i

L(x)γ
µ∂µψ

i
L(x) (2.2)

with ψi
L representing the quark and lepton isodoublets 2.1. The index i stands here for the

quark/lepton generation. Imposing the local gauge invariance on 2.2 will produce additional
terms in the Lagrangian. The presence of local SU(2) gauge will change derivatives acting
on the left-handed fields (see section A or [3] or [4] for the details):

∂µψL → DSU(2)
µ ψL(x) = (∂µ + ig

1

2
τ ·Aµ)ψL (2.3)

Here Aµ is the triplet of gauge fields A.17. The derivative acting on the right-handed
components will not be affected. It is convenient to express the interaction Lagrangian
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connected to SU(2) gauge symmetry as:

LSU(2)(x) =

(

− g

2
√
2
jµ(x)W

µ(x) + h.c.

)

− gj3µ(x)A
µ3(x). (2.4)

The first piece of current can be connected to the charged current interactions known from
β-decays, pion physics or muon decays:

jµ(x) = ψL(x)γµ(τ1 + iτ2)ψL(x) = 2ψ
+

L(x)γµψ
−
L (x). (2.5)

Here ψ+
L and ψ−

L are tha upper/lower components of the left-handed isotopic doublets.
The second part of our current conserves the charge:

j3µ(x) = ψL(x)γµ
1

2
τ3ψL(x) =

1

2

(

ψ
+

L(x)γµψ
+
L (x)− ψ

−

L(x)γµψ
−
L (x)

)

. (2.6)

In contrary to A.23 the above expression can not be identified with an electromagnetic
current, because it lacks on the right-handed field components. Here the U(1)Y symmetry
will come into play. It is an Abelian gauge symmetry like in Feynman’s quantum electro-
dynamics, thus it will affect the right-handed field components as well:

∂µψ
i
L →

(

∂µ + ig
1

2
τ ·Aµ + ig′

1

2
Y doub
L Bµ

)

ψi
L (2.7)

∂µψ
+i
R →

(

∂µ + ig′
1

2
Y +
R Bµ

)

ψ+i
R

∂µψ
−i
R →

(

∂µ + ig′
1

2
Y −
R Bµ

)

ψ−i
R

We assume the U(1)Y gauge field Bµ to have different couplings to each of the lepton field
components. The respective hypercharges are Y doub

L for the left-handed isodoublets ψi
L, Y +

R

for the right-handed singlet of the "up"/ charged lepton component ψ+i
R and Y −

R for the
right-handed singlet of the "down"/neutrino component ψ−i

R .
In order to identify the hypercharges we shall make use of the Gell-Mann-Nishijima relation
connecting the isotopic spin I3 and hypercharge Y to the electric charge Q:

Q = I3 +
1

2
Y. (2.8)

and the phenomenological electric charges: Qup = 2
3

for the u, c, t quarks, Qdown = −1
3

for

the d, s, b quarks, Qe−,µ−,τ− = −1 for the charged leptons and Qν = 0 for all neutrinos. The

Table 3: Hypercharges
Field qL uR dR lL l−R νlR

Y 1/3 4/3 -2/3 -1 -2 0

hypercharges of isodoublets and singlets of fields have been summarized in table 3. With
the hypercharge comes another conserved current:

jYµ = Y doub
L ψLγµψL + Y +

R ψ
+

Rγµψ
+
R + Y −

R ψ
−

Rγµψ
−
R (2.9)
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which is connected to the total electromagnetic current by a relation:

jEM
µ =

1

2
jYµ + j3µ. (2.10)

From this definition one may construct a proper electromagnetic current connecting both
left- and right-handed particle fields:

jEM
µ = Q+ψ

+
(x)γµψ

+(x) +Q−ψ
−
(x)γµψ

−(x) (2.11)

with Q± being the upper/lower isodoublet doublet component charges and ψ±(x) = ψ±
L (x)+

ψ±
R(x). Thus the total interaction Lagrangian of the SU(2) × U(1) model may be written

in the form:

LSU(2)×U(1)(x) =

(

− g

2
√
2
jµ(x)W

µ(x) + h.c.

)

− j3µ(x)(gA
µ3(x)− g′Bµ)− g′jEM

µ Bµ.(2.12)

At this point we are actually ready to identify the interaction boson fields in the Lagrangian,
but we still miss one important feature: the weak interaction boson masses. We shall break
the gauge invariance introducing a Higgs field:

φ =

(

φ+

φ0

)

. (2.13)

Here we have a SU(2) doublet of complex charged φ+ and neutral φ0 fields with hypercharge
Yφ = 0. The Higgs field is again described by a Lagrangian similar to B.2:

L = ∂µφ
†∂µφ− V (φ†φ) (2.14)

V (φ†φ) = −µ2φ†φ+ λ(φ†φ)2.

By imposing the SU(2)×U(1) symmetry we shall couple the Higgs field to the gauge fields,
just like in the case of quark and lepton isodoublets.

∂µφ→
(

∂µ + ig
1

2
τ ·Aµ + ig′

1

2
Bµ

)

φ (2.15)

The form of Higgs interaction potential 2.14 gives an infinite set of vacuums (states of field
φ with the lowest possible energy), they satisfy the relation:

(φ+φ)0 =
v2

2
(2.16)

with:

v2 =
µ2

λ
. (2.17)

The possible solutions for φ0 differ only by a complex phase eiλ. By choosing one of them
the initial local SU(2)×U(1) symmetry gets spontaneously broken. This will generate mass
terms of the gauge fields, as described shortly in section B or in more details in [3] and [4].
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Figure 3: Example processes in the SM of electroweak interactions.

Using the equation 2.12 one can choose four lineary independent fields representing the
physical W±, Z0 and γ bosons:

W±
µ =

1√
2

(

A1
µ ± iA2

µ

)

(2.18)

Zµ =
g

√

g2 + g′2
A3

µ −
g′

√

g2 + g′2
Bµ = cosΘWA

3
µ − sinΘWBµ

Aµ =
g′

√

g2 + g′2
A3

µ +
g

√

g2 + g′2
Bµ = sinΘWA

3
µ + cosΘWBµ.

Here we have introduced the weak angle ΘW defined as:

tanΘw =
g′

g
. (2.19)

The photon field Aµ remains massless, whereas the bosons W and Z as well as remainig
scalar Higgs field H gain masses:

m2
W =

1

4
g2v2, m2

Z =
1

4
(g2 + g′2)v2, m2

H = 2µ2. (2.20)

The above results, published by S. Weinberg in [2] are fundamental for modern particle
physics. Not only they unify the weak and electromagnetic interactions but they predict the
existence of a particle unknown by that time: the Z boson and the weak NC interaction. The
gauge bosons are connected to the interactions between fermions and quarks. An example
can be seen in the figure 3: a) electromagnetic scattering, b) neutral current scattering, c),
d) charged current scattering. The interaction Lagrangian of SM can be expressed in the
terms of physical fields (2.18).

LI SM =

(

− g

2
√
2
jCC
µ W µ + h.c.

)

− g

2 cosΘW

jNC
µ Zµ − ejEM

µ Aµ. (2.21)

The corresponding charged currents are:

jCC
µ = 2uLγµdL (”up” and ”down” quarks) (2.22)

jCC
µ = 2ν lLγµlL (neutrinos and leptons)

the electromagnetic currents:

jEM
µ =

∑

q=u,d,c,s,t,b

eqqγµq (”up” and ”down” quarks) (2.23)

jEM
µ = −lγµl (charged leptons)
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with eq being the quark charge: 2/3 for u, c, t and −1/3 for d, s, b. Notice, that the
neutrinos ,as neutral particles, do not have any electromagnetic interactions. Finally, the
neutral current is defined as:

jNC
µ = 2j3µ − 2 sin2 ΘW j

EM
µ (2.24)

both for quarks and leptons. With these prescriptions one is capable of calculating all
processes concerning the weak and electromagnetic interactions (examples in fig. 3) of
particles listed in table 1.
The Higgs boson is also responsible for generation of particle masses. The weak gauge boson
masses can be deduced from the interaction Lagrangian 2.21 and from the low-energy limit of
the charged current interaction 1.2, which occures for four-momentum transfers Q2 ≪ m2

W .

mW

mZ

≈ cosΘW (2.25)

mW =

(

πα√
2GF

)
1
2 1

sinΘW (1−∆r)

mZ =

(

πα√
2GF

)
1
2 1

sinΘW cosΘW

I the above equations GF = 1.6637(1) ·10−5GeV −2 is the Fermi coupling constant, α = e2

4π
≈

1
137

- the fine structure constant and ∆r ≈ 0.07 are the so-called "radiative corrections" for
the W boson. The Wienberg weak angle is also known with good precision. Using these
relations one can reproduce the values of boson masses listed in table 1.
The quark and lepton mass generation mechanism through coupling to the Higgs field after
the symmetry breaking is another story: these masses are not constrained, as in the case of
the W and Z masses and are free parameters in the model. There is one significant result
coming from the higgs quark and lepton mass generation mechanism: quark and lepton
fields entering in the charged currents (2.22) are no longer the same, as the fields appearing
in the free Lagrangian A.1. They appear as an unitary combination of the free fields, for
example quarks:

di mix
L (x) =

∑

d′=d,s,b

Vud′d
′
L(x) (2.26)

with di ∈ (d, s, b) and the unitary (V †V = 1) mixing matrix being the famous Cabibbo-
Kobayashi-Maskawa (CKM) quark mixing matrix. The same phenomenon happens to the
leptons. A very interesting question is, whether the neutrinos can acquire mass through the
Higgs mechanism. It is very unlikely, because their masses are unexpectedly small compared
to the other spin-1/2 particles. But the neutrino state mixing has been proven by the so-
called "neutrino oscillations"! The only question is whether this mixing has the same origin,
as in the quark case?

3 Summary

The Standard Model of the electroweak interaction is based on few principles:

1. The Lagrangian of massless fields is invariant under the local SU(2)L ×U(1)Y gauge.
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2. The weak and electromagnetic interactions are unified.

3. The masses of the particles are generated through the Higgs mechanism.

This theory has been very successful in describing processes as the β-decay, µ-decay, π-
decay, decays of the strange particles, neutrino interactions and many more. It has also
one of the biggest predictive powers in physics. It predicted the existence of Z0 bosons and
neutral currents. It is also renormalizable (all infinities appearing in the higher orders of
perturbation expansion can be emoved). But there is one condition of its renormalizability:
sum of all the charges of fields entering SU(2) doublets must be equal to zero. Thus:

3

(

2

3
− 1

3

)

N q
f −N l

f = 0 (3.1)

with N q
f and N l

f being the numbers of quarks and lepton families. From the above relation
one can see, that:

N q
f = N l

f . (3.2)

Historically the third family of leptons was unknown at the time the SM has been formulated
([2]). But in 1975 the τ lepton has been discovered. This implied the existence of the ντ
as well as the existence of the third generation of quarks t and b. All of it has been later
proven experimentally!

A Local SU(2) Gauge Invariance

Let us start with a free Lagrangian of the fermionic (no information about the helicity yet!)
doublets:

L0(x) = ψ(x) (iγµ∂µ +m)ψ(x) (A.1)

with

ψ(x) =

(

ψ+(x)
ψ−(x)

)

(A.2)

being a fermionic field doublet. But free field theories are simply boring. We would like to
put some interactions and currents in our model. In order to do so we will introduce a con-
tinuous symmetry transformation of the field doublet ψ(x). One of the minimal nontrivial
(mixing the + and − components) group of such transformations is the SU(2) group. Let
us strart with a global transformation:

ψ′(x) = Uψ(x), ψ
′
(x) = ψU †, U = exp(

i

2
τζ) (A.3)

with τ being a vector of Pauli matrices (generators of the SU(2) rotations of two-component
fields) and ζ being three real real rotation parameters. In some sense this transformation
works like a rotation of a two-component complex vector using a 2× 2 matrix. It is simple
to show, that our L0 is invariant under such transformation and the conserved "isovector"
current reads:

jµi (x) = ψ(x)γµ
1

2
τiψ(x), ∂µj

µ
i (x) = 0 (A.4)
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The total isotopic spin Ti =
∫

d3xj0i (x) is another conserved number. The global symmetry
is lacking on one very important feature: it does not generate any interactions of our fields.
Now we shall assume, that the set of rotation parameters ζ is depending on x:

U → U(x) = exp(
i

2
τζ(x)) (A.5)

The scalar part mψ(x)ψ(x) of the previous Lagrangian is again trivially invariant under
such transformation, but the derivative part isn’t. It can be shown, that:

∂µψ(x) = U †(x)

(

∂µ −
i

2
τ · ∂µζ(x)

)

ψ′(x) (A.6)

We want to have invariance under the local SU(2) transformations. There is one way to
restore it: one has to add an extra vector field satisfying the relation:

Aµ
i (x) =

1

g
∂µζi(x) (A.7)

with g being a dimensionless coupling constant. This field wll interact with our fermionic
fields through the so- called "covariant derivative":

Dµψ(x) =

(

∂µ + ig
1

2
τ ·Aµ(x)

)

ψ(x) (A.8)

By considering the general SU(2) transformation properties one can show, that:

D′
µ = U(x)DµU

†(x) = ∂µ + iq
1

2
τ ·A′

µ(x) (A.9)

A′
µ(x) = Aµ(x)−

1

g
∂µζ(x)− ζ(x)×Aµ(x)

which leads to the following transformation of the whole derivative term in Lagrangian:

Dµψ(x) = U †(x)D′
µψ

′(x) (A.10)

making the following Lagrangian invariant under local SU(2):

LSU(2)(x) = ψ(x) (iγµDµ +m)ψ(x) (A.11)

This is a step in the righ direction: our fermionic field doublet is interacting with external
vector field Aµ(x). Now we would like to know, how to describe the dynamics of the above
mentioned vector field. Let us consider the commutator of covariant derivatives:

[Dµ, Dβ] = ig
1

2
τ · Fµβ(x) (A.12)

where the nonabelian vector field strength is given by:

Fµβ(x) = ∂µAβ(x)− ∂βAµ(x)− gAµ(x)×Aβ(x) (A.13)

Its transformation properties under the local SU(2) is as follows:

F ′
µβ(x) = Fµβ(x)− ζ(x)× Fµβ(x) (A.14)
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which can be shown just by doing the known transformations (eq. A.10). Having this
identity we see, that the contraction

Fµβ(x) · F µβ(x) (A.15)

is also SU(2) invariant, giving us the proper field strength. The whole Lagrangian with
minimal coupling2 is as follows:

L(x) = ψ(x) (iγµDµ +m)ψ(x)− Fµβ(x) · F µβ(x) (A.16)

It includes now the gauge fields coupled to fermionic isotopic current:

LI(x) = −gjµ(x) ·Aµ(x) = −g
3

∑

i=1

jiµ(x)A
µ
i (x) (A.17)

where:

jiµ(x) = ψ(x)γµ
1

2
τiψ(x). (A.18)

For the sake of physical clearness it is convenient to introduce the following notation:

jµ(x) = 2(j1µ + ij2µ); Wµ(x) =
1√
2
(A1

µ − iA2
µ). (A.19)

The interaction Lagrangian may be re-written as:

LI(x) =

(

− g

2
√
2
jµ(x)W

µ(x) + h.c.

)

− gj3µ(x)A
µ3(x). (A.20)

Here we need to do some remarks about our currents:

jµ(x) = ψ(x)γµ(τ1 + iτ2)ψ(x) = 2ψ
+
(x)γµψ

−(x). (A.21)

The isotopic doublet components ψ+ and ψ− have the third projections of the isotopic spin
I3 equal to 1/2 and −1/2 respectively. From the Gell-Mann-Nishijima relation the electric
charge Q, isotopic spin projection I3 and hypercharge Y are related through:

Q = I3 +
1

2
Y. (A.22)

Thus the current jµ(x) changes the particle charges by one. And the vector field W µ(x) can
be identified through electric charge conservation with the charged W± boson field. The
remaining piece of current should be electrically neutral. Indeed:

j3µ(x) = ψ(x)γµ
1

2
τ3ψ(x) =

1

2

(

ψ
+
(x)γµψ

+(x)− ψ
−
(x)γµψ

−(x)
)

(A.23)

and the field A3(x) is the field of neutral vector particles.
By introducing the local SU(2) gauge invariance we have built a theory of fermions inter-
acting both with charged and neutral vector fields. It is a good starting point for the theory
of weak and electromagnetic ineractions. As usual, there are few "buts":

2Of course, there are more complicated possibilities, like the tensor interaction LT =
µψ(x)σµβτψ(x)F

µβ(x), but let us not get the things too complicated here. Just bear in mind, that the

local gauge invariance does not limit the coupling to minimal case.
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1. Compare the tables 1, 2 with the equation A.16. Aren’t we missing something im-
portant? Indeed, the weak vector bosons are rather massive! But the mass term
−m2

vA
µAµ will break the SU(2) symmetry, which we have introduced with such a big

effort.

2. In the introduction we have mentioned the fact, that there are only left-handed neu-
trinos. Our Lagrangian needs to be modified in order to account for that.

The next section will be devoted to solving first of the problems: how to break the gauge
symmetry in a convenient way so that we end up with physically meaningful results?

B Spontaneous Symmetry Breaking and the Higgs Mech-

anism

Let us consider the scalar complex field φ(x) with the Lagrangian:

L = ∂µφ
†∂µφ− V (φ†φ) (B.1)

V (φ†φ) = −µ2φ†φ+ λ(φ†φ)2

notice, that the quadratic potential is not a mass term, the sign is different! The Lagragian
is invariant under a global transformation

φ′(x) = eiζφ(x) (B.2)

. The system described by the above Lagrangian (B.2) reaches the minimal energy for

φ†
0φ0 =

µ2

2λ
(B.3)

(just write down the potential as V (φ†φ) = λ
(

φ†φ− µ2

2λ

)2

− µ4

4λ
). This solution has two

distinct features:

• The minimal energy is different from zero.

• The number of solutions for minimal energy is greater, than one. Actually it is infinite:

φ0 =
v√
2
eiη, v =

µ√
λ

(B.4)

In the above expression eiη is an arbitrary complex phase. We need to choose our vacuum.
This choice is arbitrary, let it simply be:

φ0 =
v√
2
. (B.5)

But now we break the symmetry given by B.2. If the initial symmetry is broken by a
choice of vacuum we are talking about the "spontaneous symmetry breaking". Let us now
introduce two real fields by the decomposition of our complex scalar field:

φ(x) =
v√
2
+
χ1 + iχ2√

2
(B.6)
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The new fields χ1 and χ2 have zero vacuum expectation values. Now one can re-write the
Lagrangian in the following form:

L =
1

2

∑

i

∂µχi∂
µχi −

1

2
2µ2χ2

1 − λvχ1(χ
2
1 + χ2

2)−
λ

4
(χ2

1 + χ2
2)

2. (B.7)

The most important result up to this point is that the field χ1 has now a mass term −1
2
2µ2χ2

1,
whereas the second field remains massless. This is the key point of the so-called "Goldstones
theorem": if generic continuous symmetry which spontaneously broken, then new massless
(or light, if the symmetry is not exact) scalar particles appear in the spectrum of possible
excitations. This is actually a problem of such theories, because no massless scalar parti-
cles have ever been observed experimentally. On the other hand in local gauge invariant
theories all vector gauge bosons are massless. But Higgs has shown, that if we take both
type of theories and mix them, we can get disadvantage× disadvantage = advantage! How
to perform such a trick?
Let us start with a theory of a complex scalar field invariant under a local gauge transfor-
mation. For simplicity let it ba an Abelian gauge (U(1) gauge, like the one generating the
electromagnetic field in Feynman’s quantum electrodynamics):

φ′(x) = eiζ(x)φ(x) (B.8)

This one will generate a real vector field, which will lead (together with a self interaction of
scalar field of the form B.2 and the vector field strength tensor Fµβ = ∂µA(x)β − ∂βA(x)µ):

L(x) = ((∂µ + igAµ(x))φ(x))
† ((∂µ + igAµ(x))φ(x))− V (φ†φ)− 1

4
FµβF

µβ. (B.9)

Again, we have a spontaneous symmetry breaking pattern, in which the generic solution
minimizing the scalar field energy is given by:

φ0 =
v√
2
eiη. (B.10)

We shall break the symmetry by choosing η = 0. The complex field φ(x) be represented in
the following form:

φ(x) =
v + χ(x)√

2
eiω(x) (B.11)

where χ(x) and ω(x) are real functions. Because of some freedom in the choice of gauge
ζ(x) (B.8), the local complex phase ω(x) may be absorbed. This is the so-called "unitary
gauge".
We may combine now (B.9) and (B.11) in order to re-express the Lagrangian:

L =
1

2
∂µχ∂

µχ− 1

2
2µ2χ2 +

1

2
g2v2AµA

µ +
1

2
g2(2vχ+ χ2)AµA

µ + (B.12)

− 1

2
λ(4vχ2 + χ4)− 1

4
FµβF

µβ

The above expression is very fundamental for particle physics. Term 1
2
g2v2AµA

µ has geer-
ated a mass term of the vector field and 1

2
2µ2χ2 gives the mass to the scalar field. We have
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arrived at the famous "Higgs mechanism" which generates masses of the vector gauge fields.
There are no massless Goldstone fields anymore. You can say, that in the Higgs mechanism
after spontaneous symmetry breaking gauge fields "eat" the Goldstone bosons, becoming
massive. It can be shown on the number of degrees of freedom. Before the symmetry
breaking we’ve had a complex field with two components and a massless vector field with
two independent degrees of freedom, polarizations (2+2). After the symmetry breaking the
Goldstone mode of scalar field has become an additional degree of freedom ofthe vector
field. This is due to the fact, that massive vector fields have an additional, longitudinal,
polarization. And we have ended with 1 scalar + 3 vector degrees of freedom.
At this point wee know, how to make a theory with neutral and charged gauge fields and
how to give them a mass (at least in the Abelian gauge transformation case, but the gener-
alization is only a small technical complication now). We should be ready now to construct
the full model of the weak+electromagnetic interactions.
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